12.已知數(shù)列{an}為等差數(shù)列,a4+a9=24,a6=11,則a7=13.

分析 利用等差數(shù)列通項公式列出方程組,求出首項和公差,由此能求出a7

解答 解:∵數(shù)列{an}為等差數(shù)列,a4+a9=24,a6=11,
∴$\left\{\begin{array}{l}{{a}_{1}+3d+{a}_{1}+8d=24}\\{{a}_{1}+5d=11}\end{array}\right.$,
解得a1=1,d=2,
∴a7=a1+6d=1+12=13.
故答案為:13.

點評 本題考查等差數(shù)列的第7項的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.定義運算$|{\begin{array}{l}a&b\\ c&d\end{array}}$|=ad-bc,則符合條件$|{\begin{array}{l}z&{1+2i}\\{1-2i}&{1-i}\end{array}}$|=0的復數(shù)$\overline z$在復平面內(nèi)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知定圓C1:(x+1)2+y2=36及定圓C2:(x-1)2+y2=4,動圓P與C1內(nèi)切,與C2外切,求動圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知點P是直線l:3x-y-2=0上任意一點,過點P引圓(x+3)2+(y+1)2=1的切線,則切線長度的最小值為( 。
A.3B.$\sqrt{7}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知直線l:x-y-1=0,則直線的斜率為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知集合A={0,1,2,3},B={2,3,4,5},則A∩B={2,3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設向量$\overrightarrow a=({2,λ}),\overrightarrow b=({λ-1,1})$,若$\overrightarrow a∥\overrightarrow b$,則λ=-1或2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.三角形ABC中,角A,B,C所對邊分別為a,b,c,已知b2+c2-a2=$\sqrt{3}$bc,且a=1,則三角形ABC外接圓面積為π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知△ABC的頂點分別為A(-1,5),B(-2,-1),C(4,3),
(1)求BC邊上的中線的所在的直線方程;
(2)求BC邊上的高線的所在的直線方程;
(3)求△ABC的面積.

查看答案和解析>>

同步練習冊答案