A. | 3 | B. | $\sqrt{7}$ | C. | 2 | D. | 1 |
分析 根據(jù)切線性質(zhì)和勾股定理可知當(dāng)圓心到P的距離最短時(shí),切線長(zhǎng)最短.
解答 解:設(shè)P到圓心的距離為m,切線長(zhǎng)為n,圓的半徑為1,
則由勾股定理可得:m2-1=n2,
∴當(dāng)m取得最小值時(shí),n取得最小值,
而m的最小值為圓心到直線l的距離d=$\frac{|-9+1-2|}{\sqrt{10}}$=$\sqrt{10}$,
∴切線長(zhǎng)n的最小值為$\sqrt{ftwntz2^{2}-1}$=3.
故選:A.
點(diǎn)評(píng) 本題考查了直線與圓的位置關(guān)系,距離公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{4\sqrt{3}-3}}{10}$ | B. | $\frac{{4\sqrt{3}+3}}{10}$ | C. | $\frac{{3-4\sqrt{3}}}{10}$ | D. | $\frac{{4\sqrt{3}+3}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
時(shí)間 | (0,2) | [2,4) | [4,6) | [6,8) | 8小時(shí)以上 |
男生人數(shù) | 10 | 25 | 35 | 30 | x |
女生人數(shù) | 15 | 30 | 25 | y | 5 |
男生 | 女生 | 總計(jì) | |
平均時(shí)間不超過(guò)6小時(shí) | |||
平均時(shí)間超過(guò)6小時(shí) | |||
總計(jì) |
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ | P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 6.635 | 7.789 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com