20.函數(shù)f(x)=x3-3x,在△ABC中,C為鈍角,則( 。
A.f(sinA)<f(sinB)B.f(cosA)>f(cosB)C.f(sinA)<f(cosB)D.f(sinA)>f(cosB)

分析 先求導,求出函數(shù)的單調(diào)減區(qū)間,再根據(jù)誘導公式和三角形的內(nèi)角的關(guān)系得到答案.

解答 解:f′(x)=3x2-3,
令f′(x)=0,解得x=±1,
當f′(x)≤0時,即-1≤x≤1時,函數(shù)單調(diào)遞減,
∵△ABC中,C為鈍角,
∴90°<C<180°,
∴0<B+A<90°,
∴0<B<90°-A<90°,
∴sinB<sin(90°-A)=cosA,cosB>cos(90°-A)=sinA,
∴f(sinB)>f(cosA),f(cosB)>f(sinA),
∵A,B的大小無法判斷,
∴sinA與sinB,cosA與cosB無法判斷,
故選:C

點評 本題考查了導數(shù)和函數(shù)的單調(diào)性的關(guān)系和三角形中的角的關(guān)系和三角函數(shù)的值域以及單調(diào)性,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0且a≠b)的兩個焦點,P為雙曲線右支上異于頂點的任意一點,O為坐標原點.下面四個命題( 。
A.△PF1F2的內(nèi)切圓的圓心必在直線x=a上
B.△PF1F2的內(nèi)切圓的圓心必在直線x=b上
C.△PF1F2的內(nèi)切圓的圓心必在直線OP上
D.△PF1F2的內(nèi)切圓必通過點(b,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合A={x|-3<x<5},B={x|1<x≤7},則A∪B為( 。
A.(1,5)B.(-3,1)C.(5,7]D.(-3,7]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2,DC=3,E為AB的中點,過E作EF∥AD,將四邊形AEFD沿EF折起使面AEFD⊥面EBCF.
(1)若G為DF的中點,求證:EG∥面BCD;
(2)若AD=2,試求多面體AD-BCFE體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-4≥0}\\{2y-3≤0}\end{array}\right.$,則z=$\frac{y+1}{x}$的取值范圍是[$\frac{5}{8}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax+4,x<1}\\{1+\frac{1}{2x},x≥1}\end{array}\right.$在R上單調(diào),則實數(shù)a的取值范圍為(  )
A.(-∞,2]B.[2,+∞)C.[2,$\frac{7}{2}$]D.[$\frac{7}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(Ⅰ)在等差數(shù)列中,已知d=2,a15=-10,求a1與Sn
(Ⅱ)在2與64中間插入4個數(shù)使它們成等比數(shù)列,求該數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=log3x與y=log${\;}_{\frac{1}{3}}$(9x)的圖象(  )
A.關(guān)于直線x=1對稱B.關(guān)于直線y=x對稱
C.關(guān)于直線y=-1對稱D.關(guān)于直線y=1對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且Sn=$\frac{{n}^{2}}{2}$+$\frac{3n}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=an+2-an+$\frac{1}{{a}_{n+1}-{a}_{n}}$,且數(shù)列{bn}的前n項和為Tn,求證:Tn<2n+$\frac{5}{12}$.

查看答案和解析>>

同步練習冊答案