已知函f(x)=|x-1|+1
(1)用分段函數(shù)的形式表示該函數(shù);
(2)畫出該函數(shù)的圖象;
(3)寫出該函數(shù)的值域.
分析:(1)先對原函數(shù)式中的絕對值內(nèi)的式子進行分類討論,將原函數(shù)式化成分段函數(shù)的形式,
(2)最后利用一次函數(shù)的圖象即可畫出函數(shù)的圖象.
(3)根據(jù)圖象觀察得出函數(shù)的值域.
解答:解:(1)函數(shù)f(x)=|x-1|+1
=
2-x,x<1
x,x≥1

它的圖象是兩段射線組成.
(2)函數(shù)f(x)=|x-1|+1的圖象:如圖所示.

(3)據(jù)圖象,此函數(shù)有最小值1,從而寫出該函數(shù)的值域是:[1,+∞].
點評:本題主要考查了函數(shù)的圖象、函數(shù)的值域,考查學(xué)生的畫圖能力等基本知識.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)=ex-x (e為自然對數(shù)的底數(shù)).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集為P,若M={x|
12
≤x≤2
}且M∩P≠∅求實數(shù)a的取值范圍;
(3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差數(shù)列{an}和首項為f(I)公比大于0的等比數(shù)列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,請求出數(shù)列{an}、{bn}的通項公式.若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)=ln x,g(x)=
12
ax2+bx(a≠0).
(1)若a=-2時,函h(x)=f(x)-g(x),在其定義域是增函數(shù),求b的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;
(3)當a=-2,b=4時,求證2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)=e2+ax,g(x)=exlnx
(1)設(shè)曲線y=f(x)在x=1處得切線與直x+(e-1)y=1垂直,求a的值.
(2)若對任意實x≥0f(x)>0恒成立,確定實數(shù)a的取值范圍.
(3)a=1時,是否存x0∈[1,e],使曲線C:y=g(x)-f(x)在點x=x0處得切線與y軸垂直?若存在求x0的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省宜賓市南溪一中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函f(x)=ln x,g(x)=ax2+bx(a≠0).
(1)若a=-2時,函h(x)=f(x)-g(x),在其定義域是增函數(shù),求b的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;
(3)當a=-2,b=4時,求證2x-f(x)≥g(x)-3.

查看答案和解析>>

同步練習(xí)冊答案