19.三階行列式$|\begin{array}{l}{1}&{-2}&{3}\\{2}&{0}&{-4}\\{-1}&{5}&{4}\end{array}|$中,元素4的代數(shù)余子式的值為4.

分析 根據(jù)余子式的定義可知,在行列式中劃去第3行第3列后所余下的2階行列式帶上符號(-1)i+j為M33,則答案可求.

解答 解:三階行列式$|\begin{array}{l}{1}&{-2}&{3}\\{2}&{0}&{-4}\\{-1}&{5}&{4}\end{array}|$中,元素4的代數(shù)余子式為M33=$|\begin{array}{l}{1}&{-2}\\{2}&{0}\end{array}|$,其值為1×0-(-2)×2=4.
故答案為:4.

點評 本題考查學(xué)生掌握三階行列式的余子式的定義,會進行矩陣的運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給n個自上而下相連的正方形著黑色或白色.當n≤4時,在所有不同的著色方案中,黑色正方形互不相鄰的著色方案如圖所示,由此推斷,當n=6時,至少有兩個黑色正方形相鄰的著色方案共有( 。┓N.
A.21B.32C.43D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的左頂點為A,右頂點為B,點P是橢圓上不同于A,B的任一點,直線AP、BP分別與直線x=$\frac{{a}^{2}}{c}$交于M,N兩點,F(xiàn)為右焦點,則∠MFN等于90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某工廠安排甲、乙、丙、丁、戊五名畢業(yè)生到A、B、C、D四個車間實習(xí),每名畢業(yè)生只能進一個車間實習(xí),每個車間至少要安排一名畢業(yè)生,則不安排甲同學(xué)到A車間的方案有( 。
A.36種B.120種C.144種D.180種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=lg(1-x)的值域為(-∞,0],則函數(shù)f(x)的定義域為(  )
A.[0,+∞)B.[0,1)C.[-9,+∞)D.[-9,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若Sn=n2an(n≥2且n∈N*),a1=1,則an=$\frac{2}{n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)短軸的一個端點與其兩個焦點構(gòu)成面積為3的直角三角形.
(1)求橢圓C的方程;
(2)過圓E:x2+y2=2上任意一點P作圓E的切線l,l與橢圓C交于A、B兩點,以AB為直徑的圓是否過定點,如過,求出該定點;不過說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=|lnx|,關(guān)于x的不等式f(x)-f(x0)≥c(x-x0)的解集為(0,+∞),其中x0∈(0,+∞),c為常數(shù).當x0=1時,c的取值范圍是[-1,1];當${x_0}=\frac{1}{2}$時,c的值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖:已知平面ABCD⊥平面BCE,平面ABE⊥平面BCE,AB∥CD,AB=BC=4,CD=2,△BEC為等邊三角形,P是線段CD上的動點.
(1)求證:平面ABE⊥平面ADE;
(2)求直線AB與平面APE所成角的最大值;
(3)是否存在點P,使得AP⊥BD?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案