【題目】平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,則異面直線EF與BC所成角大小為 .
【答案】30°
【解析】解:延長AD,F(xiàn)E交于Q.
∵ABCD是矩形,
∴BC∥AD,
∴∠AQF是異面直線EF與BC所成的角.
在梯形ADEF中,由DE∥AF,AF⊥FE,AF=2,DE=1得
∠AQF=30°.
即異面直線EF與BC所成角為30°.
所以答案是:30°.
【考點精析】本題主要考查了異面直線及其所成的角的相關(guān)知識點,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x|x+a|﹣ lnx.
(1)當a=0時,討論函數(shù)f(x)的單調(diào)性;
(2)若a<0,討論函數(shù)f(x)的極值點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題:
①對立事件一定是互斥事件;②若A,B為兩個隨機事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對立事件.
其中正確命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列說法:
①在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選用的模型比較合適;
②用相關(guān)指數(shù)R2來刻畫回歸的效果,R2值越大,說明模型的擬合效果越好;
③比較兩個模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的模型,擬合效果越好.
④在研究氣溫和熱茶銷售杯數(shù)的關(guān)系時,若求得相關(guān)指數(shù)R2≈0.85,則表明氣溫解釋了15%的熱茶銷售杯數(shù)變化.
其中正確命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:max{a,b}= ,若實數(shù)x,y滿足:|x|≤3,|y|≤3,﹣4x≤y≤ x,則max{|3x﹣y|,x+2y}的取值范圍是( )
A.[ ,7]
B.[0,12]
C.[3, ]
D.[0,7]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1= ,an+1an=2an+1﹣1(n∈N*),令bn=an﹣1.
(1)求數(shù)列{bn}的通項公式;
(2)令cn= ,求證:c1+c2+…+cn<n+ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的右頂點與上頂點分別為,橢圓的離心率為,且過點.
(1)求橢圓的標準方程;
(2)如圖,若直線與該橢圓交于兩點,直線的斜率互為相反數(shù).
①求證:直線的斜率為定值;
②若點在第一象限,設(shè)與的面積分別為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(﹣x)=f(x),f(x+8)=f(x),且當x∈(0,4]時f(x)= ,關(guān)于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016個整數(shù)解,則實數(shù)a的取值范圍是( )
A.(﹣ ln6,ln2]
B.(﹣ln2,﹣ ln6)
C.(﹣ln2,﹣ ln6]
D.(﹣ ln6,ln2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB=2AD,∠DAB=60°,M是BC的中點.將△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中點,圖2所示.
(Ⅰ)求證:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的動點,當 為何值時,二面角P﹣MC﹣B的大小為60°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com