3.等差數(shù)列{an}中,a2+a3=4,a4+a6=6.
(1)求數(shù)列{an}的通項公式;   
(2)求數(shù)列{an}的前n項和sn

分析 (1)利用等差數(shù)列通項公式列出方程組,求出${a}_{1}=\frac{7}{5},d=\frac{2}{5}$,由此能出數(shù)列{an}的通項公式.
(2)數(shù)列{an}的前n項和Sn=$\frac{n}{2}({a}_{1}+{a}_{n})$,由此能求出結(jié)果.

解答 解:(1)∵等差數(shù)列{an}中,a2+a3=4,a4+a6=6.
∴$\left\{\begin{array}{l}{{a}_{1}+d+{a}_{1}+2d=4}\\{{a}_{1}+3d+{a}_{1}+5d=6}\end{array}\right.$,
解得${a}_{1}=\frac{7}{5},d=\frac{2}{5}$,
∴數(shù)列{an}的通項公式${a}_{n}=\frac{7}{5}+(n-1)×\frac{2}{5}$=$\frac{2}{5}n+1$.
(2)∵${a}_{1}=\frac{7}{5},d=\frac{2}{5},{a}_{n}=\frac{2}{5}n+1$,
∴數(shù)列{an}的前n項和:
Sn=$\frac{n}{2}({a}_{1}+{a}_{n})$=$\frac{n}{2}(\frac{7}{5}+\frac{2}{5}n+1)$=$\frac{1}{5}{n}^{2}+\frac{6}{5}n$.

點評 本題考查等差數(shù)列的通項公式、前n項和公式的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=ex-x+a,若f(x)>0恒成立,則實數(shù)a的取值范圍是( 。
A.(-1,+∞)B.(-∞,-1)C.[-1,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.曲線y=ex在點(2,e2)處的切線與坐標(biāo)軸所圍三角形的面積為( 。
A.$\frac{e^2}{2}$B.2e2C.e2D.$\frac{9}{4}{e^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若關(guān)于x的不等式loga(|x-2|+|x+a|)>2(a>0且a≠1)恒成立,則a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)求值;2log32-log3$\frac{32}{9}$+log38-3${\;}^{2+lo{g}_{3}5}$
(2)設(shè)f(x)=$\frac{1}{{3}^{x}+\sqrt{3}}$,求f(x)+f(1-x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|x2-2x-3<0},B={-1,0,1,2,3},則A∩B=( 。
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知{an}數(shù)列為正項等比數(shù)列,a1=2,a3=8,
(1)求{an}通項公式;
(2)求{nan}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1長軸長、短軸長和焦距成等差數(shù)列,若A、B是橢圓長軸的兩個端點,M、N是橢圓上關(guān)于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2(k1k2≠0),則|k1|+|k2|的最小值為( 。
A.$\frac{8}{5}$B.$\frac{6}{5}$C.$\frac{3}{2}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在長方體ABCD-A1B1C1D1中,O是DB的中點,直線A1C交平面C1BD于點M,則下列結(jié)論錯誤的是( 。
A.C1,M,O三點共線B.C1,M,O,C四點共面
C.C1,O,A1,M四點共面D.D1,D,O,M四點共面

查看答案和解析>>

同步練習(xí)冊答案