13.已知函數(shù)f(x)=ex-x+a,若f(x)>0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-1,+∞)B.(-∞,-1)C.[-1,+∞)D.(-∞,-1]

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,求出f(x)的最小值,得到關(guān)于a的不等式,解出即可.

解答 解:f′(x)=ex-1,
令f′(x)>0,解得:x>0,
令f′(x)<0,解得:x<0,
故f(x)在(-∞,0)遞減,在(0,+∞)遞增,
故f(x)min=f(0)=1+a,
若f(x)>0恒成立,
則1+a>0,解得:a>-1,
故選:A.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.化簡:$\frac{cos(2π+α)tan(π+α)}{{cos(\frac{π}{2}-α)}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C極坐標(biāo)方程:${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$,點(diǎn)P極坐標(biāo)為$({2\sqrt{3},\frac{π}{6}})$,直線l過點(diǎn)P,且傾斜角為$\frac{π}{3}$.
(1)求曲線C的直角坐標(biāo)方程及直線l參數(shù)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),求$|{\frac{1}{{|{PA}|}}-\frac{1}{{|{PB}|}}}|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線a與平面α不垂直,則下列說法正確的是( 。
A.平面α內(nèi)有無數(shù)條直線與直線a垂直
B.平面α內(nèi)有任意一條直線與直線a不垂直
C.平面α內(nèi)有且只有一條直線與直線a垂直
D.平面α內(nèi)可以找到兩條相交直線與直線a垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.演繹推理“因?yàn)閒′(x0)=0時(shí),x0是f(x)的極值點(diǎn),而對于函數(shù)f(x)=x3,f′(0)=0,所以0是函數(shù)f(x)=x3的極值點(diǎn).”所得結(jié)論錯(cuò)誤的原因是( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.全不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從甲、乙、丙、丁四人中選3人當(dāng)代表,則甲被選上的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\left\{\begin{array}{l}{cos(π{x}^{2}),-1<x<0}\\{{e}^{x}-1,x≥0}\end{array}\right.$,若f(a)=0,則a的所有可能值組成的集合為( 。
A.{0}B.{0,$\frac{\sqrt{2}}{2}$}C.{0,-$\frac{\sqrt{2}}{2}$}D.{-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,∠ABC=$\frac{π}{3}$,邊BC在平面α內(nèi),頂點(diǎn)A在平面α外,直線AB與平面α所成角為θ.若平面ABC與平面α所成的二面角為$\frac{π}{3}$,則sinθ=$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.等差數(shù)列{an}中,a2+a3=4,a4+a6=6.
(1)求數(shù)列{an}的通項(xiàng)公式;   
(2)求數(shù)列{an}的前n項(xiàng)和sn

查看答案和解析>>

同步練習(xí)冊答案