設(shè)a,b,c為一個三角形的三邊,s=
12
(a+b+c)
,且s2=2ab,試證:s<2a.
分析:由a,b,c為一個三角形的三邊,可得a+c>b,s>b,故s2>sb,即2ab>sb,從而證得s<2a.
解答:解:∵a,b,c為一個三角形的三邊,∴a+c>b.   又 s=
1
2
(a+b+c)

∴s>b,∴s2>sb.
又s2=2ab,∴2ab>sb,
∴s<2a.
點(diǎn)評:本題考查三角形的任意兩邊之和大于第三邊,不等式的性質(zhì)的應(yīng)用,證得s>b,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•眉山一模)設(shè)函數(shù)f(x)對其定義域內(nèi)的任意實數(shù)x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對定義域內(nèi)任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(當(dāng)x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點(diǎn),點(diǎn)C在線段AB上,且
AC
CB
,則f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ
;
④設(shè)A,B,C是一個三角形的三個內(nèi)角,則sinA+sinB+sinC的最大值是
3
3
2

其中,正確命題的序號是
①③④
①③④
(寫出所有你認(rèn)為正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:047

設(shè)abc為某一個三角形的三條邊,abc,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b、c為正數(shù),則a+b+、c+這三個數(shù)

A.都不大于2                                                  B.至少有一個不大于2

C.都不小于2                                                  D.至少有一個不小于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b、c為某一個三角形的三條邊,a≥b≥c,求證:

(1)c(a+b-c)≥b(c+a-b)≥a(b+c-a);

(2)a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省眉山市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)對其定義域內(nèi)的任意實數(shù),則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對定義域內(nèi)任意x1、x2、x3,…,xn都有(當(dāng)x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點(diǎn),點(diǎn)C在線段AB上,且;
④設(shè)A,B,C是一個三角形的三個內(nèi)角,則sinA+sinB+sinC的最大值是
其中,正確命題的序號是    (寫出所有你認(rèn)為正確命題的序號).

查看答案和解析>>

同步練習(xí)冊答案