【題目】1)過點(diǎn)作直線使它被直線截得的線段被點(diǎn)平分,求直線的方程;

2)光線沿直線射入,遇直線后反射,求反射光線所在的直線方程.

【答案】1;(2

【解析】

試題分析:(1)設(shè)的交點(diǎn)為,則根據(jù)點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)上,求得的值,再根據(jù)點(diǎn)的坐標(biāo)求出直線的方程;(2)先求得反射點(diǎn)的坐標(biāo),在直線上取一點(diǎn),設(shè)關(guān)于直線的對稱點(diǎn),求得,再利用直線的兩點(diǎn)式方程可得所求反射光線所在直線的方程.

試題解析:(1)設(shè)的交點(diǎn)為,則由題意知,點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)上,代入的方程得,即點(diǎn)在直線上,所以直線的方程為

2)由,得,反射點(diǎn)的坐標(biāo)為.又取直線上一點(diǎn),設(shè)關(guān)于直線的對稱點(diǎn),由可知,.的中點(diǎn)的坐標(biāo)為.點(diǎn)在上,.

,

根據(jù)直線的兩點(diǎn)式方程可得所求反射光線所在直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣2m|(m>0). (Ⅰ)求證:f(x)≥8恒成立;
(Ⅱ)求使得不等式f(1)>10成立的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某圓的極坐標(biāo)方程為,

(1)圓的普通方程和參數(shù)方程;

(2)圓上所有點(diǎn)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=eax1﹣ax2 , a為不等于零的常數(shù).
(Ⅰ)當(dāng)a<0時,求函數(shù)f′(x)的零點(diǎn)個數(shù);
(Ⅱ)若對任意x1 , x2 , 當(dāng)x1<x2時,f(x2)﹣f(x1)>a( ﹣2x1)(x2﹣x1)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點(diǎn)為,,離心率.

(1)求此橢圓的方程;

2)設(shè)直線,若與此橢圓相交于兩點(diǎn),且等于橢圓的短軸長,求的值;

3)以此橢圓的上頂點(diǎn)為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項和為Sn , 且滿足2Sn=2n+1+λ(λ∈R). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某經(jīng)銷商計劃銷售一款新型的空氣凈化器,經(jīng)市場調(diào)研發(fā)現(xiàn)以下規(guī)律:當(dāng)每臺凈化器的利潤為 x (單位:元, x 0 )時,銷售量 q(x) (單位:百臺)與 x 的關(guān)系滿足:若 x 不超過 20 , ;若 x 大于或等于180 ,則銷售量為零;當(dāng) 20 ≤ x ≤180 時,( a , b 為實常數(shù)).

(Ⅰ)求函數(shù) q(x) 的表達(dá)式;

(Ⅱ)當(dāng) x 為多少時,總利潤(單位:元)取得最大值,并求出該最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】整改校園內(nèi)一塊長為15 m,寬為11 m的長方形草地(如圖A),將長減少1 m,寬增加1 m(如圖B).問草地面積是增加了還是減少了?假設(shè)長減少x m,寬增加x m(x>0),試研究以下問題:

x取什么值時,草地面積減少?

x取什么值時,草地面積增加?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|xex+1|,關(guān)于x的方程f2(x)+2sinαf(x)+cosα=0有四個不等實根,sinα﹣cosα≥λ恒成立,則實數(shù)λ的最大值為(
A.﹣
B.﹣
C.﹣
D.﹣1

查看答案和解析>>

同步練習(xí)冊答案