【題目】已知a,b∈(0,+∞),且2a4b=2. (Ⅰ)求 的最小值;
(Ⅱ)若存在a,b∈(0,+∞),使得不等式 成立,求實數(shù)x的取值范圍.

【答案】解:(Ⅰ)由2a4b=2可知a+2b=1, 又因為 ,
由a,b∈(0,+∞)可知 ,
當(dāng)且僅當(dāng)a=2b時取等,所以 的最小值為8.
(Ⅱ)由題意可知即解不等式|x﹣1|+|2x﹣3|≥8,
,∴
,∴x∈,
,∴x≥4.
綜上,
【解析】(Ⅰ)由2a4b=2可知a+2b=1,利用“1”的代換,即可求 的最小值;(Ⅱ)分類討論,解不等式,即可求實數(shù)x的取值范圍.
【考點精析】解答此題的關(guān)鍵在于理解基本不等式的相關(guān)知識,掌握基本不等式:,(當(dāng)且僅當(dāng)時取到等號);變形公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),若對任意實數(shù)x,有f(x)>f'(x),且f(x)+2017為奇函數(shù),則不等式f(x)+2017ex<0的解集是(
A.(﹣∞,0)
B.(0,+∞)
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的長軸長為 ,左焦點的坐標(biāo)為(﹣2,0);
(1)求C的標(biāo)準(zhǔn)方程;
(2)設(shè)與x軸不垂直的直線l過C的右焦點,并與C交于A、B兩點,且 ,試求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各面中,面積最大的是(
A.8
B.
C.12
D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的 中點.

(Ⅰ)若PA=PD,求證:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,點M在線段PC上,試
確定點M的位置,使二面角M﹣BQ﹣C大小為60°,并求出 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且bsin2C=csinB.
(1)求角C;
(2)若 ,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B,C的坐標(biāo)分別為(﹣ ,0),( ,0),(m,n),G,O′,H分別為△ABC的重心,外心,垂心.

(1)寫出重心G的坐標(biāo);
(2)求外心O′,垂心H的坐標(biāo);
(3)求證:G,H,O′三點共線,且滿足|GH|=2|OG′|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(Ⅰ)如果f(x)在x=0處取得極值,求k的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)k=0時,過點A(0,t)存在函數(shù)曲線f(x)的切線,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求出圓C的直角坐標(biāo)方程;
(2)已知圓C與x軸相交于A,B兩點,直線l:y=2x關(guān)于點M(0,m)(m≠0)對稱的直線為l'.若直線l'上存在點P使得∠APB=90°,求實數(shù)m的最大值.

查看答案和解析>>

同步練習(xí)冊答案