從集合的所有非空子集中,等可能地取出一個(gè).

  ①記性質(zhì):集合中的所有元素之和為10,求所取出的非空子集滿足性質(zhì)的概率;

②記所取出的非空子集的元素個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

 

【答案】

解:① 

的分布列為:

1

2

3

4

5

 

 

 

從而=.

【解析】本題考查古典概型和期望,古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題可以列舉出所有事件,概率問(wèn)題同其他的知識(shí)點(diǎn)結(jié)合在一起,實(shí)際上是以概率問(wèn)題為載體,主要考查的是另一個(gè)知識(shí)點(diǎn).

(1)記“所取出的非空子集滿足性質(zhì)”為事件.

  基本事件的總數(shù),事件包含的基本事件數(shù)是結(jié)合古典概型得到結(jié)論。

(2)由題意知集合{1,2,3,4}的所有非空子集有24-1,等可能地取出一個(gè),每個(gè)被取到的概率是 ,所取出的非空子集中元素的個(gè)數(shù)為ξ,ξ的可能取值是1、2、3、4,根據(jù)集合的子集寫出分布列,得到期望.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•金山區(qū)一模)對(duì)于集合N={1,2,3,…,n}的每一個(gè)非空子集,定義一個(gè)“交替和”如下:按照遞減的次序重新排列該子集,然后從最大數(shù)開(kāi)始交替地減、加后繼的數(shù).例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和為5.當(dāng)集合N中的n=2時(shí),集合N={1,2}的所有非空子集為{1},{2},{1,2},則它的“交替和”的總和S2=1+2+(2-1)=4,請(qǐng)你嘗試對(duì)n=3、n=4的情況,計(jì)算它的“交替和”的總和S3、S4,并根據(jù)其結(jié)果猜測(cè)集合N={1,2,3,…,n}的每一個(gè)非空子集的“交替和”的總和Sn=
n•2n-1
n•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于集合N={1,2,3…n}的每一個(gè)非空子集,定義一個(gè)“交替和”為:按照遞減的次序重新排列該子集中的元素,然后從最大數(shù)開(kāi)始交替的減、加后繼數(shù).例如集合{1,2,4,6,9}的“交替和”為9-6+4-2+1=6,集合{5}的“交替和”為5.用Sn表示集合N={1,2,3…n}的所有非空子集的“交替和”的總和,則(1)S2=
 
;(2)Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省重點(diǎn)中學(xué)盟校2010屆高三第二次聯(lián)考理科試題 題型:解答題

(本小題滿分12分)
從集合的所有非空真子集中等可能地取出一個(gè).
(1)求所取的子集中元素從小到大排列成等比數(shù)列的概率;
(2)記所取出的子集的元素個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省、岳陽(yáng)縣一中高三11月聯(lián)考文科數(shù)學(xué) 題型:填空題

已知集合為非空集合,且,定義的“交替和”如下:將集合中的元素按由大到小排列,然后從最大的數(shù)開(kāi)始,交替地減、加后續(xù)的數(shù),直到最后一個(gè)數(shù),并規(guī)定單元素集合的交替和為該元素。例如集合的交替和為8-7+5-2+1=5,集合的交替和為4,當(dāng)時(shí),集合的非空子集為,記三個(gè)集合的交替和的總和為= 4,則時(shí),集合的所有非空子集的交替和的總和=     ;集合的所有非空子集的交替和的總和=       

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆湖南省澧縣一中、岳陽(yáng)縣一中高三11月聯(lián)考文科數(shù)學(xué) 題型:填空題

已知集合為非空集合,且,定義的“交替和”如下:將集合中的元素按由大到小排列,然后從最大的數(shù)開(kāi)始,交替地減、加后續(xù)的數(shù),直到最后一個(gè)數(shù),并規(guī)定單元素集合的交替和為該元素。例如集合的交替和為8-7+5-2+1=5,集合的交替和為4,當(dāng)時(shí),集合的非空子集為,記三個(gè)集合的交替和的總和為= 4,則時(shí),集合的所有非空子集的交替和的總和=    ;集合的所有非空子集的交替和的總和=       

查看答案和解析>>

同步練習(xí)冊(cè)答案