【題目】集合{x∈N*|x﹣3<2}的另一種表示法是(
A.{0,1,2,3,4}
B.{1,2,3,4}
C.{0,1,2,3,4,5}
D.{1,2,3,4,5}

【答案】B
【解析】解:∵集合{x∈N+|x﹣3<2}是用描述法來表示的,用另一種方法來表示就是用列舉法,
∵{x∈N+|x﹣3<2}={x∈N+|x<5}={1,2,3,4}
故選:B.
集合{x∈N+|x﹣3<2}是用描述法來表示的,用另一種方法來表示就是用列舉法,看出描述法所表示的數(shù)字,在集合中列舉出元素.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若“m﹣1<x<m+1”是“x2﹣2x﹣3>0”的充分不必要條件,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】滿足下面哪一個條件時,可以判定兩個不重合的平面α與β平行(
A.α內(nèi)有無數(shù)個點到平面β的距離相等
B.α內(nèi)的△ABC與β內(nèi)的△A'B'C'全等,且AA'∥BB'∥CC'
C.α,β都與異面直線a,b平行
D.直線l分別與α,β兩平面平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一智能機器人在平面上行進中始終保持與點F(1,0)的距離和到直線x=﹣1的距離相等,若機器人接觸不到過點P(﹣1,0)且斜率為k的直線,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位安排甲、乙、丙三人在某月1日至12日值班,每人4天.
甲說:我在1日和3日都有值班;
乙說:我在8日和9日都有值班;
丙說:我們?nèi)烁髯灾蛋嗟娜掌谥拖嗟龋畵?jù)此可判斷丙必定值班的日期是(
A.2日和5日
B.5日和6日
C.6日和11日
D.2日和11日

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)b、c表示兩條直線,α,β表示兩個平面,則下列命題是真命題的是(
A.若bα,c∥α,則b∥c
B.若bα,b∥c,則c∥α
C.若c∥α,α⊥β,則c⊥β
D.若c∥α,c⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)=x2+2x,在使f(x)≥M成立的所有實數(shù)M中,我們把M的最大值Mmax叫做函數(shù)f(x)=x2+2x的下確界,則對于a∈R,且a≠0,a2﹣4a+6的下確界為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是(
A.若α>β,則sinα>sinβ
B.命題:“x>1,x2>1”的否定是“x≤1,x2≤1”
C.直線ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)某種產(chǎn)品的總利潤y(單位:萬元)與總產(chǎn)量x(單位:件)的函數(shù)解析式為y=0.1x﹣150,若公司想不虧損,則總產(chǎn)量x至少為

查看答案和解析>>

同步練習冊答案