已知圓C:
x=1+cosθ
y=sinθ
(θ為參數(shù))和直線l:
x=2+tcosα
y=
3
+tsinα
(其中為參數(shù),α為直線的傾斜角),如果直線與圓C有公共點(diǎn),求α的取值范圍.
分析:把直線的參數(shù)方程化為普通方程,把圓的參數(shù)方程化為直角坐標(biāo)方程,根據(jù)圓心到直線的距離小于或等于半徑,求得tanα≥
3
3
,由此求出傾斜角α的范圍.
解答:解:∵直線l的參數(shù)方程為l:
x=2+tcosα
y=
3
+tsinα
(t為參數(shù),α為直線l的傾斜角),
消去參數(shù)t化為普通方程為tanα•x-y-2tanα+
3
=0.
圓C:
x=1+cosθ
y=sinθ
(θ為參數(shù)),化為直角坐標(biāo)方程為(x-1)2+y2=1,
表示以C(1,0)為圓心,以1為半徑的圓.
根據(jù)圓心C到直線的距離d=
|-tanα+
3
|
1+tan2α
≤1,
解得tanα≥
3
3

再由傾斜角α∈[0,π) 可得,
π
6
≤α
π
2

故α的取值范圍為[
π
6
,
π
2
).
點(diǎn)評:本題主要考查把參數(shù)方程化為普通方程,點(diǎn)到直線的距離公式的應(yīng)用,直線和圓的位置關(guān)系,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、已知圓C經(jīng)過點(diǎn)A(2,-1),和直線l1:x+y=1相切,圓心在直線2x+y=0上.則圓C的方程是(x-1)2+(y+2)2=
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=r12(r1>0)與圓C:(x-a)2+(y-b)2=r22(r2>0)內(nèi)切,且兩圓的圓心關(guān)于直線l:x-y+
2
=0對稱.直線l與圓O相交于A、B兩點(diǎn),點(diǎn)M在圓O上,且滿足
OM
=
OA
+
OB

(1)求圓O的半徑r1及圓C的圓心坐標(biāo);
(2)求直線l被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:
x=1+cosθ
y=sinθ
(θ為參數(shù))和直線θl:
x=2++tcosα
y=
3
+tsinα
(其中t為參數(shù),α為直線l的傾斜角)
(1)當(dāng)α=
3
時(shí),求圓上的點(diǎn)到直線l的距離的最小值;
(2)當(dāng)直線l與圓C有公共點(diǎn)時(shí),求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:
x=1+cosθ
y=sinθ
(θ為參數(shù))和直線l:
x=2+tcosα
y=
3
+tsinα
(其中為參數(shù),α為直線的傾斜角),如果直線與圓C有公共點(diǎn),求α的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案