如圖所示,某飼養(yǎng)場(chǎng)要建造一間兩面靠墻的三角形露天養(yǎng)殖場(chǎng),已知已有兩面墻的夾角為60°(即),現(xiàn)有可供建造第三面圍墻的材料60米(兩面墻的長(zhǎng)均大于60米),為了使得小老虎能健康成長(zhǎng),要求所建造的三角形露天活動(dòng)室盡可能大,記

(1)問(wèn)當(dāng)為多少時(shí),所建造的三角形露天活動(dòng)室的面積最大?
(2)若飼養(yǎng)場(chǎng)建造成扇形,養(yǎng)殖場(chǎng)的面積能比(1)中的最大面積更大?說(shuō)明理由。

(1)時(shí),面積最大;(2)養(yǎng)殖場(chǎng)建造成扇形時(shí)面積能比(1)中的最大面積更大

解析試題分析:(1)由余弦定理可得間的關(guān)系式然后用重要不等式可得的最大值,從而求得三角形面積的最大值 也可以用正弦定理將面積用角表示出來(lái),然后用三角函數(shù)求其最大值 (2)將扇形的面積求出來(lái),再與(1)中的最大面積比較即可
試題解析:(1)解法一:在中,由余弦定理:  2分

                           4分
                     6分
 
此時(shí)     8分
解法二:在中,由正弦定理:  2分
化簡(jiǎn)得:,   4分
所以
            6分



所以當(dāng)時(shí),   8分
法若飼養(yǎng)場(chǎng)建造成扇形時(shí),由60=
所以扇形的面積為                        10分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/52/6/y1llt.png" style="vertical-align:middle;" />
所以養(yǎng)殖場(chǎng)建造成扇形時(shí)面積能比(1)中的最大面積更大                            12分
考點(diǎn):1、正弦定理與余弦定理;2、三角恒等變換;3、扇形的面積;4、比較大小

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在△ABC中,角A,B,C所對(duì)的邊分別是ab,c,設(shè)平面向量e1,e2,且e1e2.
(1)求cos 2A的值;
(2)若a=2,求△ABC的周長(zhǎng)L的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角,,的對(duì)邊為,且;
(Ⅰ)求的值;
(Ⅱ)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在△ABC中,BC=a,AC=b,a、b是方程的兩個(gè)根,且,求△ABC的面積及AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

釣魚島及其附屬島嶼是中國(guó)固有領(lǐng)土,如圖:點(diǎn)A、B、C分別表示釣魚島、南小島、黃尾嶼,點(diǎn)C在點(diǎn)A的北偏東47°方向,點(diǎn)B在點(diǎn)C的南偏西36°方向,點(diǎn)B在點(diǎn)A的南偏東79°方向,且A、B兩點(diǎn)的距離約為3海里.

(1)求A、C兩點(diǎn)間的距離;(精確到0.01)
(2)某一時(shí)刻,我國(guó)一漁船在A點(diǎn)處因故障拋錨發(fā)出求救信號(hào).一艘R國(guó)艦艇正從點(diǎn)C正東10海里的點(diǎn)P處以18海里/小時(shí)的速度接近漁船,其航線為PCA(直線行進(jìn)),而我東海某漁政船正位于點(diǎn)A南偏西60°方向20海里的點(diǎn)Q處,收到信號(hào)后趕往救助,其航線為先向正北航行8海里至點(diǎn)M處,再折向點(diǎn)A直線航行,航速為22海里/小時(shí).漁政船能否先于R國(guó)艦艇趕到進(jìn)行救助?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,甲船以每小時(shí)海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于處時(shí),乙船位于甲船的北偏西方向的處,此時(shí)兩船相距海里,當(dāng)甲船航行分鐘到達(dá)處時(shí),乙船航行到甲船的北偏西方向的處,此時(shí)兩船相距海里,問(wèn)乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,甲船以每小時(shí)海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于處時(shí),乙船位于甲船的北偏西方向的處,此時(shí)兩船相距海里,當(dāng)甲船航行分鐘到達(dá)處時(shí),乙船航行到甲船的北偏西方向的處,此時(shí)兩船相距海里,問(wèn)乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,已知:,的外接圓的半徑為.
(1)求角C的大;
(2)求的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中的內(nèi)角、、所對(duì)的邊分別為、,若,,且.
(Ⅰ)求角的大。
(Ⅱ)求函數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案