經(jīng)過點(diǎn)M(3,-1),且對稱軸在坐標(biāo)軸上的等軸雙曲線的方程是( 。
A、y2-x2=8
B、x2-y2=±8
C、x2-y2=4
D、x2-y2=8
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)對稱軸在坐標(biāo)軸上的等軸雙曲線的方程為x2-y2=λ(λ≠0),代入M的坐標(biāo),可得雙曲線的方程.
解答: 解:設(shè)對稱軸在坐標(biāo)軸上的等軸雙曲線的方程為x2-y2=λ(λ≠0),
將點(diǎn)M(3,-l),代入可得9-1=λ,
∴λ=8,
∴方程為x2-y2=8,
故選:D.
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,考查學(xué)生的計(jì)算能力,正確設(shè)出雙曲線的方程是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知10α=2-
1
2
,10β=32
1
3
,求102α-
3
4
β
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+5
+
1
x+3
,(1)求函數(shù)的定義域;(2)求f(-5),f(
1
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x,y滿足
8
x
+
1
y
=1
,則x+2y的最小值為(  )
A、18
B、16
C、6
2
D、6
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|-2≤x≤5},B={x|m+1≤x≤m+2},若A∩B=B,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

制造甲、乙兩種煙花,甲種煙花每枚含A藥品3g,B藥品4g,C種藥品4g,乙種煙花每枚含A藥品2g,B藥品11g,C藥品6g.已知每天原料的使用限額為A種藥品120g,B藥品400g,C藥品240g.甲種煙花每枚可獲利2元,乙種煙花每枚可獲利1元,問每天應(yīng)生產(chǎn)甲、乙兩種煙花各多少枚才能獲利最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)在圓x2+y2-6x-6y+14=0上. 求
y
x
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(1-x)+loga(x+3)
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的零點(diǎn);
(3)求函數(shù)f(x)在[-2,0]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在數(shù)列{an}中,a1=3,(n+1)an-nan+1=1,n∈N*
(1)證明數(shù)列{an}是等差數(shù)列,并求an的通項(xiàng)公式;
(2)設(shè)數(shù)列{
1
anan+1
}的前n項(xiàng)和為Tn,證明:Tn
1
6

查看答案和解析>>

同步練習(xí)冊答案