已知函數(shù)f(x)=
x+5
+
1
x+3
,(1)求函數(shù)的定義域;(2)求f(-5),f(
1
3
)的值.
考點(diǎn):函數(shù)的定義域及其求法,函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不等于0求解x的取值集合得答案;
(2)直接把-5、
1
3
代入函數(shù)解析式求值.
解答: 解:(1)由
x+5≥0
x+3≠0
,解得x≥-5且x≠-3.
∴函數(shù)f(x)的定義域?yàn)閧x|x≥-5且x≠-3};
(2)f(-5)=
-5+5
+
1
-5+3
=-
1
2

f(
1
3
)=
1
3
+5
+
1
1
3
+3
=
3
10
+
4
3
3
點(diǎn)評(píng):本題考查了函數(shù)的定義域及其求法,考查了函數(shù)值的求法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+sinxcosx(x∈R).
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)若f(
x0
2
)=
3
4
,x0∈(
π
4
,
π
2
),求sinx0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin390°-
2
cos765°+3cos(-660°)-
3
tan(-390°)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)例{an}中,滿足an>0,n=1,2…,且a5•a2n-5=22n(n≥3),則當(dāng)n≥1時(shí),log
 
a1
2
+log
 
a3
2
+…+log
 
a2n-1
2
( 。
A、n2
B、(n-1)2
C、(n+1)2
D、n(2n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(3x-1)(2-x)<0的解集為( 。
A、{x|1<x<2}
B、{x|x<
1
3
或x>2}
C、{x|x<-2或x>1}
D、{x|
1
3
<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2>0},B={x|x-a>0}
(1)若A∩B=B,求實(shí)數(shù)a的取值范圍;
(2)若A∪B=R,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算
i
1+i
(i為虛數(shù)單位)的值等于( 。
A、-
1
2
-
1
2
i
B、-
1
2
+
1
2
i
C、
1
2
-
1
2
i
D、
1
2
+
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)M(3,-1),且對(duì)稱軸在坐標(biāo)軸上的等軸雙曲線的方程是( 。
A、y2-x2=8
B、x2-y2=±8
C、x2-y2=4
D、x2-y2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=xlnx
(1)求g(x)=
f(x)+k
x
(k∈R)的單調(diào)區(qū)間;
(2)證明:當(dāng)x≥1時(shí),2x-e≤f(x)恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案