命題A:“a>b”,命題B:“|a|>|b|”,則命題A是命題B的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:分充分性和必要性進(jìn)行討論,可以使用舉反例說(shuō)明結(jié)論不成立.
解答: 解:充分性:a=-1,b=-2,滿足a>b,但不滿足|a|>|b|,充分性不成立;
必要性:|-3|>|-2|,但是-3<-2,必要性也不成立;
故命題A是命題B的既不充分也不必要條件,
故選:D.
點(diǎn)評(píng):本題考查充要條件,需要分充分性和必要性判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)于正整數(shù)k,g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(10)=5.設(shè)Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n).
(1)則S2=
 
;(2)Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=
3
3
x2+
2
3
3
x-
3
與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸相交于點(diǎn)C.
(1)求證:△ABC為直角三角形;
(2)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使△BCM為等腰三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,若△OBC沿x軸以每秒1個(gè)單位向左平移,當(dāng)點(diǎn)C正好移動(dòng)到拋物線上時(shí),停止移動(dòng),求移動(dòng)過(guò)程中△OBC和△AOC重疊部分的面積S與時(shí)間t的函數(shù)關(guān)系式;
(4)把拋物線向上平移
2
3
3
個(gè)單位,然后再向右平移m個(gè)單位,若平移后拋物線的頂點(diǎn)恰好在△ABC內(nèi)部,請(qǐng)直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且對(duì)任意x1、x2∈[1,a](a>1),當(dāng)x1>x2時(shí),都有f(x2)>f(x1)>0,則下列不等式不一定成立的是( 。
A、f(a)>f(0)
B、f(
1+a
2
)>f(
a
C、f(
1-3a
1+a
)<f(
a-3
1+a
D、f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,2)及橢圓
x2
4
+y2=1上任意一點(diǎn)P,則PA的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)M(5,3)到拋物線y=
1
a
x2(a>0)的準(zhǔn)線的距離為6,則拋物線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x+1)=3x+2,則f(x-1)=( 。
A、3xB、3x-4
C、3x-1D、3x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷直線t:y=x+b與圓C:x2+y2-2y-15=0有無(wú)公共點(diǎn),若有,求出公共點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱錐的底面周長(zhǎng)為6,側(cè)面都是直角三角形,則此棱錐的體積為( 。
A、
4
2
3
B、
2
C、
2
2
3
D、
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案