已知向量滿足:||=4,||=3,(2+3)•(2-)=61.
(Ⅰ)求的值;
(Ⅱ)求向量的夾角;
(Ⅲ)求|-|的值.
【答案】分析:(Ⅰ)由(2+3)•(2-)=61得,42+4-32=61將||=4,||=3,代入即可求得兩向量的內(nèi)積;
(Ⅱ)由公式求出向量的夾角余弦,再由出對(duì)應(yīng)的角;
(Ⅲ)先求出(-2=2-2+2=13,再開方求出兩向量差的模.
解答:解:(Ⅰ)由(2+3)•(2-)=61得,42+4-32=61.
又||=4,||=3,可得=6.                    …(4分)
(Ⅱ)設(shè)向量的夾角為θ,
,
可知向量的夾角為60°.                    …(8分)
(Ⅲ)由(-2=2-2+2=13可得,.…(12分)
點(diǎn)評(píng):本題考查平面向量數(shù)量積的運(yùn)算,解題的關(guān)鍵是熟練掌握數(shù)量積的公式及其運(yùn)算性質(zhì),向量的角的數(shù)量積表示,本題是數(shù)量積運(yùn)用的基本題型.考查了方程的思想,轉(zhuǎn)化的思想及運(yùn)算變形的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省吉林一中高一(下)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知向量滿足||=1,||=2,且⊥(+),則向量的夾角為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年黑龍江省哈爾濱三中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:填空題

已知向量滿足||=1,||=2,且⊥(+),則向量的夾角為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年黑龍江省哈爾濱三中高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

已知向量滿足||=1,||=2,且⊥(+),則向量的夾角為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年寧夏高考數(shù)學(xué)仿真模擬試卷8(文科)(解析版) 題型:解答題

已知向量滿足||=1,||=2,且⊥(+),則向量的夾角為   

查看答案和解析>>

同步練習(xí)冊(cè)答案