與=1(a>b>0)的漸近線( )
A.重合
B.不重合,但關(guān)于x軸對稱
C.不重合,但關(guān)于y軸對稱
D.不重合,但關(guān)于直線y=x對稱
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂選修數(shù)學(xué)1-1蘇教版 蘇教版 題型:013
=1與=1(a>b>0)的漸近線
A.重合
B.不重合,但關(guān)于x軸對稱
C.不重合,但關(guān)于y軸對稱
D.不重合,但關(guān)于直線y=x對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇南京金陵中學(xué)高三第一學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓C:+=1(a>b>0)的離心率e=,橢圓C的上、下頂點(diǎn)分別為A1,A2,左、右頂點(diǎn)分別為B1,B2,左、右焦點(diǎn)分別為F1,F(xiàn)2.原點(diǎn)到直線A2B2的距離為.
(1)求橢圓C的方程;
(2)過原點(diǎn)且斜率為的直線l,與橢圓交于E,F(xiàn)點(diǎn),試判斷∠EF2F是銳角、直角還是鈍角,并寫出理由;
(3)P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2,分別交軸于點(diǎn)N,M,若直線OT與過點(diǎn)M,N 的圓G相切,切點(diǎn)為T.證明:線段OT的長為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高三年級聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓C:+=1(a>b>0)的焦距為4,且與橢圓x2+=1有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同的兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高三3月月考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com