14.函數(shù)f(x)=log3x-$\frac{1}{x}$的零點(diǎn)所在區(qū)間為( 。
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,1)C.(1,3)D.(3,4)

分析 利用函數(shù)零點(diǎn)的判定定理求得函數(shù)f(x)的零點(diǎn)所在區(qū)間為(1,2),從而求得n的值.

解答 解:函數(shù)f(x)=log3x-$\frac{1}{x}$的零點(diǎn)所在的區(qū)間,可由
再根據(jù)f(3)=log33-$\frac{1}{3}$=1-$\frac{1}{3}$>0,f(1)=-1<0,可得函數(shù)f(x)的零點(diǎn)所在區(qū)間為(1,3),
故選:C.

點(diǎn)評 本題主要考查函數(shù)的零點(diǎn)與方程的根的關(guān)系,函數(shù)零點(diǎn)的判定定理,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)f(x)是(-∞,+∞)上的偶函數(shù),f(x+3)=f(x).當(dāng)0≤x≤1時有f(x)=3x,則f(8.5)等于( 。
A.-1.5B.-0.5C.0.5D.1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x-1.
(Ⅰ)求f(3)+f(-1);
(Ⅱ)求f(x)在R上的解析式;
(Ⅲ)求不等式-7≤f(x)≤3的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合P={0,1,2},Q={y|y=2x},則P∩Q=( 。
A.{0,1}B.{1,2}C.{0,1,2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知偶函數(shù)y=f(x)是定義域?yàn)镽,當(dāng)x≥0時,$f(x)=\left\{\begin{array}{l}3sin\frac{π}{2}x,0≤x≤1\\{2^{2-x}}+1,x>1\end{array}\right.$.函數(shù)g(x)=x2-2ax+a2-1(a∈R).若函數(shù)y=g(f(x))有且僅有6個零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(1,2]B.(1,2)C.(2,3]D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單遞減的函數(shù)是( 。
A.y=ln$\frac{1}{|x|}$B.y=x3C.y=ln(x+$\sqrt{{x^2}+1}$)D.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|x2-4x-5≥0},集合B={x|2a≤x≤a+2}.
(1)若a=-1,求A∩B和(∁RA)∪B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是增函數(shù),且f(3)=0,則使得f(x)>0的x的取值范圍是( 。
A.(-∞,-3)B.(3,+∞)C.(-3,3)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.命題“?x>0,x2≠x”的否定是( 。
A.?x>0,x2=xB.?x≤0,x2=xC.?x>0,x2=xD.?x≤0,x2=x

查看答案和解析>>

同步練習(xí)冊答案