16.下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):
產(chǎn)量x(千件)2356
成本y(萬元)78912
(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程$\widehat{y}$=$\widehat$x$+\widehat{a}$(其中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)
(Ⅱ)預(yù)計(jì)產(chǎn)量為8千件時(shí)的成本.

分析 (Ⅰ)根據(jù)表中數(shù)據(jù)計(jì)算$\overline{x}$、$\overline{y}$,求出回歸系數(shù),寫出回歸直線的方程;
(Ⅱ)利用回歸方程計(jì)算x=8時(shí)$\widehat{y}$的值即可.

解答 (Ⅰ)根據(jù)表中數(shù)據(jù),計(jì)算$\overline{x}$=$\frac{1}{4}$×(2+3+4+5)=4,
$\overline{y}$=$\frac{1}{4}$×(7+8+9+12)=9,
$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{2×7+3×8+5×9+6×12-4×4×9}{{2}^{2}{+3}^{2}{+5}^{2}{+6}^{2}-4{×4}^{2}}$=1.1,
$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$=9-1.1×4=4.6,
則回歸直線的方程為$\widehat{y}$=1.1x+4.6;
(Ⅱ)當(dāng)x=8時(shí),$\widehat{y}$=1.1×8+4.6=13.4,
預(yù)計(jì)產(chǎn)量為8千件時(shí)的成本為13.4萬元.

點(diǎn)評(píng) 本題考查了求線性回歸方程的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知二項(xiàng)式(ax+1)7展開式的各項(xiàng)系數(shù)和為128,(ax+1)7=a0+a1(ax+3)+a2(ax+3)2+…+a7(ax+3)7,則a4=-280.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a=2-2,b=log${\;}_{2}^{\frac{1}{3}}$,c=2${\;}^{\frac{1}{3}}$,比較a,b,c的大。ā 。
A.a>b>cB.a<b<cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若實(shí)數(shù)a、b滿足條件a>b,則下列不等式一定成立的是( 。
A.$\frac{1}{a}$<$\frac{1}$B.a2>b2C.ab>b2D.a3>b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上隨機(jī)取一個(gè)數(shù)x,cosx的值介于0到$\frac{1}{2}$之間的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)命題p:實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a>0;命題q:實(shí)數(shù)x滿足|x-3|≤1.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若圓錐的側(cè)面積與過軸的截面面積之比為$\frac{{2\sqrt{3}π}}{3}$,作為其母線與軸的夾角的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四棱錐中,AB∥CD,BC⊥CD側(cè)面SAB為等邊三角形,AB=BC=2,CD=SD=1.
(1)證明:SD⊥平面SAB;
(2)求二面角A-SB-C的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列命題正確的是( 。
A.命題“?x∈R,使得x2-1<0”的否定是:?x∈R,均有x2-1<0
B.命題“若x=3,則x2-2x-3=0”的否命題是:若x≠3,則x2-2x-3≠0
C.“$α=2kπ+\frac{π}{3}(k∈Z)$”是“$sin2α=\frac{{\sqrt{3}}}{2}$”的必要而不充分條件
D.命題“cosx=cosy,則x=y”的逆否命題是真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案