7.若a=2-2,b=log${\;}_{2}^{\frac{1}{3}}$,c=2${\;}^{\frac{1}{3}}$,比較a,b,c的大。ā 。
A.a>b>cB.a<b<cC.a>c>bD.c>a>b

分析 根據(jù)指數(shù)函數(shù)的單調(diào)性比較大小即可.

解答 解:y=2x是增函數(shù),
故0<a=2-2<c=${2}^{\frac{1}{3}}$,
而log${\;}_{2}^{\frac{1}{3}}$<0,
故b<a<c,
故選:D.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在期中考試中,高三某班50名學(xué)生化學(xué)成績(jī)的平均分為85分、方差為8.2,該班某位同學(xué)知道自己的化學(xué)成績(jī)?yōu)?5,則下列四個(gè)數(shù)中不可能是該班化學(xué)成績(jī)的是( 。
A.65B.75C.90D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),隨機(jī)抽取了6個(gè)試銷售數(shù)據(jù),得到第i個(gè)銷售單價(jià)xi(單位:元)與銷售yi(單位:件)的數(shù)據(jù)資料,算得$\sum_{i=1}^6{{x_i}=51,}\sum_{i=1}^6{{y_i}=480,}\sum_{i=1}^6{{x_i}{y_i}=4066,}\sum_{i=1}^6{{x_i}^2=434.2.}$
(1)求回歸直線方程$\hat y=\hat bx+\hat a$;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入-成本)
附:回歸直線方程$\hat y=\hat bx+\hat a$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$是樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若實(shí)數(shù)a,b滿足$\frac{1}{a^2}+\frac{1}{b^2}=ab$,則ab的最小值為( 。
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{3-{x}^{2}}{1+{x}^{2}}$.
(1)計(jì)算f(3),f(4),f($\frac{1}{3}$)及f($\frac{1}{4}$)的值;
(2)由(1)的結(jié)果猜想一個(gè)普遍的結(jié)論,并加以證明;
(3)求值f(1)+f(2)+…+f(2017)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2017}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.命題p:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為∅;命題q:函數(shù)f(x)=(4a2+7a-1)x是增函數(shù),若¬p∧q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知定義域?yàn)檎麛?shù)集的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x,x為偶數(shù)}\\{x-1,x為奇數(shù)}\end{array}\right.$,f1(x)=f(x),fn(x)=f[fn-1(x)].若fn(21)=1,則n=6;若f4(x)=1,則x所有的值構(gòu)成的集合為{7,9,10,12,16}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):
產(chǎn)量x(千件)2356
成本y(萬(wàn)元)78912
(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程$\widehat{y}$=$\widehat$x$+\widehat{a}$(其中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)
(Ⅱ)預(yù)計(jì)產(chǎn)量為8千件時(shí)的成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=|x-a|+|x+2|
(1)當(dāng)a=3時(shí),求不等式f(x)≥7的解集;
(2)若f(x)≤x+4的解集包含[1,2],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案