10.設(shè)△ABC的三邊長分別為a、b、c,△ABC的面積為S,內(nèi)切圓半徑為r,外接圓半徑為R,則$r=\frac{2S}{a+b+c}$,類比得四面體S-ABCD的四個(gè)側(cè)面的面積分別為S1,S2,S3,S4,四面體S-ABCD的體積為V,內(nèi)切球的半徑為R,則R=$R=\frac{3V}{{{S_1}+{S_2}+{S_3}+{S_4}}}$.

分析 根據(jù)平面與空間之間的類比推理,由點(diǎn)類比點(diǎn)或直線,由直線 類比 直線或平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積即可.

解答 解:設(shè)四面體的內(nèi)切球的球心為O,
則球心O到四個(gè)面的距離都是R,
所以四面體的體積等于以O(shè)為頂點(diǎn),
分別以四個(gè)面為底面的4個(gè)三棱錐體積的和.
則四面體的體積為V=$\frac{1}{3}$(S1+S2+S3+S4)R
所以$R=\frac{3V}{{{S_1}+{S_2}+{S_3}+{S_4}}}$.
故答案為:$R=\frac{3V}{{{S_1}+{S_2}+{S_3}+{S_4}}}$.

點(diǎn)評 類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(或猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且在[5,6]上是增函數(shù),α,β是銳角三角形的兩個(gè)內(nèi)角,則( 。
A.f(sinα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ)D.f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知ω>0,函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)在($\frac{π}{2}$,π)上單調(diào)遞增,則ω的取值范圍是(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)(x∈R)滿足:對于任意實(shí)數(shù)x,y,都有f(x+y)=f(x)+f(y)+$\frac{1}{2}$恒成立,且當(dāng)x>0時(shí),f(x)>f(0)恒成立,
(1)盤點(diǎn)f(x)在R上的單調(diào)性,并加以證明;
(2)若函數(shù)F(x)=f(max{-x,2x-x2})+f(-k)+1(其中max$\{a,b\}=\left\{\begin{array}{l}a,a≥b\\ b,a<b\end{array}$)有三個(gè)不同的零點(diǎn)x1,x2,x3,求u=(x1+x2+x3)+x1x2x3的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.袋中有大小相同的紅、黃兩種顏色的球各2個(gè),從中任取1只,不放回地抽取2次.求:
(1)寫出基本事件空間;
(2)第一次是紅球的概率;
(3)2只顏色全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知P(1,1)為橢圓$\frac{x^2}{2}+\frac{y^2}{4}=1$內(nèi)一定點(diǎn),經(jīng)過P引一弦,使此弦在P(1,1)點(diǎn)被平分,則此弦所在的直線方程是2x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|x-1>0},集合 B={x||x|≤2},則A∩B=( 。
A.(-1,2)B.[-2,2]C.(1,2]D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C:x2+y2-2x+4y-4=0.
(1)求過點(diǎn)(4,0)圓的切線方程.
(2)是否存在斜率為1的直線m,使m被圓C截得的弦為AB,且以AB為直徑的圓過原點(diǎn).若存在,求出直線m的方程; 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.方程組$\left\{\begin{array}{l}{2x+y=2}\\{x-y=1}\end{array}\right.$ 的解集是( 。
A.{1,0}B.{x=1,y=0}C.(1,0)D.{(1,0)}

查看答案和解析>>

同步練習(xí)冊答案