15.函數(shù)f(x)=2x-sinx在(-∞,+∞)上( 。
A.是增函數(shù)B.是減函數(shù)
C.在(0,+∞)上增,在(-∞,0)上減D.在(0,+∞)上減,在(-∞,0)上增

分析 利用導(dǎo)數(shù)即可判斷函數(shù)的單調(diào)性.

解答 解:∵f(x)=2x-sinx,
∴f'(x)=2-cosx,
∵-1≤cosx≤1,
∴f'(x)=2-cosx>0,
即函數(shù)f(x)=2x-sinx在(-∞,+∞)上是增函數(shù),
故選:A.

點評 本題主要考查函數(shù)單調(diào)性的判斷,利用導(dǎo)數(shù)和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2x-2ax+b,且f(1)=$\frac{3}{2}$,f(2)=$\frac{15}{4}$.
(1)求a,b;
(2)判斷f(x)的奇偶性;
(3)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△ABC中A(3,2)、B(-1,5),C點在直線3x-y+3=0上,若S△ABC=10,求△ABC外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知曲線y=f(x)在x=5處的切線方程是y=-2x+8,則f(5)與f′(5)分別為( 。
A.3,3B.3,-1C.-1,3D.-2,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)(1+i)z=3+i,則$\overline{z}$=(  )
A.1+2iB.1-2iC.2-iD.2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$cos({α-\frac{π}{3}})=\frac{3}{4}$,則$sin({α+\frac{7π}{6}})$的值為-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖1,在矩形ABCD中,AB=2BC,E、F分別是AB、CD的中點,現(xiàn)在沿EF把這個矩形折成一個直二面角A-EF-C(如圖2),則在圖2中直線AF與平面EBCF所成的角的大小為45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一個口袋中裝有大小形狀完全相同的n+3個乒乓球,其中有1個乒乓球上標(biāo)有數(shù)字0,有2個乒乓球上標(biāo)有數(shù)字2,其余n個乒乓球上均標(biāo)有數(shù)字3(n∈N*),若從這個口袋中隨機(jī)地摸出2個乒乓球,恰有一個乒乓球上標(biāo)有數(shù)字2的概率是$\frac{8}{15}$.
(Ⅰ)求n的值;
(Ⅱ)從口袋中隨機(jī)地摸出2個乒乓球,設(shè)ξ表示所摸到的2個乒乓球上所標(biāo)數(shù)字之和,求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊答案