17.在希臘數(shù)學(xué)家海倫的著作《測地術(shù)》中記載了著名的海倫公式,利用三角形的三條邊長求三角形面積.若三角形的三邊長為a,b,c,其面積S=$\sqrt{p(p-a)(p-b)(p-c)}$,這里p=$\frac{1}{2}$(a+b+c),已知在△ABC中,BC=6,AB=2AC,其面積取最大值時sinA=$\frac{3}{5}$.

分析 設(shè)b=x,則c=2x,根據(jù)海倫面積公式得S△ABC的解析式,由三角形三邊關(guān)系求得2<x<6,由二次函數(shù)的性質(zhì)求得S△ABC取得最大值,從而求出sinA的值即可.

解答 解:∵a=6,設(shè)b=x,則c=2x,可得:p=$\frac{1}{2}$(a+b+c)=3+$\frac{3x}{2}$,
∴S=$\sqrt{p(p-a)(p-b)(p-c)}$=$\sqrt{(3+\frac{3}{2}x)(\frac{3}{2}x-3)(3+\frac{1}{2}x)(3-\frac{1}{2}x)}$=$\sqrt{144-{\frac{9}{16}{(x}^{2}-20)}^{2}}$
由三角形三邊關(guān)系有:x+2x>6且x+6>2x,解得:2<x<6,
故當(dāng) x=2$\sqrt{5}$時,S△ABC取得最大值12.
由$\frac{1}{2}$×2$\sqrt{5}$×4$\sqrt{5}$sinA=12,解得:sinA=$\frac{3}{5}$,
故答案為:$\frac{3}{5}$.

點評 本題主要考查了二次函數(shù)的性質(zhì)和海倫面積公式在解三角形中的應(yīng)用.當(dāng)涉及最值問題時,可考慮用函數(shù)的單調(diào)性和定義域等問題,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=BB1,點D,E分別為BC,CC1的中點.
(1)求證:平面ABE⊥平面AB1D;
(2)點P是線段B1D上一點,若A1P∥平面ADE,求$\frac{{B}_{1}P}{PD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+$\frac{4}{{x}^{2}}$.
(1)求證:f(x)是偶函數(shù);
(2)判斷函數(shù)f(x)在(0,$\sqrt{2}$)和($\sqrt{2}$,+∞)上的單調(diào)性并用定義法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在半徑等于13cm的球內(nèi)有一個截面,它的面積是25πcm2,則球心到截面的距離為( 。
A.12cmB.10cmC.8cmD.6cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$若函數(shù)f(x)的圖象在點A,B處的切線重合,則實數(shù)a的取值范圍是(  )
A.(2,+∞)B.(-∞,$\frac{1}{4}$)C.(-2,$\frac{1}{4}$)D.(-∞,-2)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2$\sqrt{3}sin({π-x})cosx+2co{s^2}$x+a-1.
(1)求f(x)的對稱軸;
(2)若f(x)在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上的最大值與最小值的和為2,求a的值.
(3)若f(x)=0有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)隨機(jī)變量X的分布列為$P(X=i)=a•{({\frac{2}{3}})^i}i=1,2,3$,則a的值為(  )
A.$\frac{17}{38}$B.$\frac{27}{38}$C.$\frac{17}{19}$D.$\frac{27}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛游泳是否有關(guān),對100名高三學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳不喜歡游泳合計
男生10
女生20
合計
已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為$\frac{3}{5}$.
(Ⅰ)請將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
p(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.有下列關(guān)系:①人的年齡與他(她)擁有的財富之間的關(guān)系; ②曲線上的點與該點的坐標(biāo)之間的關(guān)系; ③蘋果的產(chǎn)量與氣候之間的關(guān)系;④森林中的同一種樹木,其橫斷面直徑與高度之間的關(guān)系,其中是相關(guān)關(guān)系的為①③④.

查看答案和解析>>

同步練習(xí)冊答案