A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 由累加法求出an=4+n2-n,$\frac{a_n}{n}$=$\frac{4}{n}$+n-1,利用基本不等式,由此能導出當n=2時$\frac{a_n}{n}$的最小值.
解答 解:an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2[1+2+…+(n-1)]+4=4+n2-n
所以$\frac{a_n}{n}$=$\frac{4}{n}$+n-1
因為$\frac{4}{n}$+n≥4,當且僅當n=2時取等號,
所以當n=2時$\frac{a_n}{n}$的最小值為3.
故選:B.
點評 本題考查了遞推數列的通項公式的求解以及基本不等式的運用,考查了同學們綜合運用知識解決問題的能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $λ>-\frac{1}{2}$ | B. | $λ<-\frac{1}{2}$ | C. | λ>-$\frac{1}{2}$且λ≠2 | D. | λ<-$\frac{1}{2}$且λ≠2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com