給出下列四個(gè)命題:
(1)有理數(shù)是實(shí)數(shù);           
(2)有些平行四邊形不是菱形;
(3)?x∈R,x2-2x>0;     
(4)?x∈R,2x+1為奇數(shù);
以上命題為真命題的序號(hào)是
 
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:(1)由實(shí)數(shù)的概念:有理數(shù)和無理數(shù)統(tǒng)稱實(shí)數(shù),即可判斷;
(2)舉矩形是平行四邊形,但不是菱形,即可判斷;
(3)令x=1,求出x2-2x的值,即可判斷;
(4)比如x=1,則2x+1=3為奇數(shù),即可判斷.
解答: 解:(1)有理數(shù)和無理數(shù)統(tǒng)稱實(shí)數(shù),故有理數(shù)是實(shí)數(shù),即(1)正確;
(2)矩形是平行四邊形,但不是菱形,故(2)正確;
(3)若x=1,則x2-2x=-1<0,故?x∈R,x2-2x>0錯(cuò);
(4)比如x=1,則2x+1=3為奇數(shù),故?x∈R,2x+1為奇數(shù)正確.
故答案為:(1)(2)(4).
點(diǎn)評(píng):本題考查簡(jiǎn)易邏輯的基礎(chǔ)知識(shí),主要考查全稱命題和存在性命題的真假,注意運(yùn)用舉反例.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對(duì)角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個(gè)命題:
①面DBC是等邊三角形;  
②AC⊥BD;
③三棱錐D-ABC的體積是
2
6

其中正確命題的序號(hào)是
 
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+y2=4,直線l經(jīng)過M(1,0),傾斜角為
6
,直線l與圓C交與A、B兩點(diǎn).
(1)若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,長度單位不變,建立極坐標(biāo)系,寫出圓C的極坐標(biāo)方程;
(2)選擇適當(dāng)?shù)膮?shù),寫出直線l的一個(gè)參數(shù)方程,并求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩焦點(diǎn)為F1,F(xiàn)2,M為橢圓上一點(diǎn),且M不在直線F1F2上,∠F1MF2=90°,|F1F2|=2c,|MF1|+|MF2|=2a,則△MF1F2的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx,當(dāng)x2>x1>0時(shí),給出以下幾個(gè)結(jié)論:
①(x1-x2)•[f(x1)-f(x2)]<0
f(x1)-f(x2)
x1-x2
<1
③f(x1)+x2<f(x2)+x1;
④x2f(x1)<x1f(x2);
⑤當(dāng)lnx1>-1時(shí),x1f(x1)+x2f(x2)>2x2f(x1
其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C1的極坐標(biāo)方程ρcos2θ=sinθ,曲線C2的參數(shù)方程為
x=3-t
y=1-t
,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系,則曲線C1上的點(diǎn)與曲線C2上的點(diǎn)最近的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a2=1,a5=4,則該等差數(shù)列{an}的公差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn)為F,C與過原點(diǎn)的直線相交于A、B兩點(diǎn),連結(jié)AF、BF,若|AB|=10,|AF|=6,cos∠ABF=
4
5
,則C的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC周長為1,連結(jié)△ABC三邊的中點(diǎn)構(gòu)成第二個(gè)三角形,再連結(jié)第二個(gè)三角形三邊的中點(diǎn)構(gòu)成第三個(gè)三角形,依此類推,設(shè)第n個(gè)三角形周長為l(n),則歸納l(n)關(guān)于n的表達(dá)式為l(n)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案