【題目】如圖,在四棱錐中,已知底面,,,,中點(diǎn).

1)求證:平面平面

2)若四棱錐的體積為1,求點(diǎn)到平面的距離.

【答案】1)證明見解析(2

【解析】

1)證明.設(shè)中點(diǎn)為,連接.推出,,得到平面,然后證明平面平面;(2設(shè),并求出,設(shè)到平面的距離為,則得解.

1平面,平面,得

.在,得,

設(shè)中點(diǎn)為,連接

則四邊形為邊長為1的正方形,

所以,且

因?yàn)?/span>,所以,

又因?yàn)?/span>,所以平面,又平面

所以平面平面

2)因?yàn)?/span>平面,所以就是四棱錐的高,設(shè),

因?yàn)?/span>,,所以四棱錐的底面是直角梯形,

因?yàn)?/span>,所以得.

在直角三角形中,,,

因?yàn)?/span>平面,又平面,所以平面平面,

在平面內(nèi)過點(diǎn)的垂線,交于點(diǎn),

平面,且.

在四面體中,設(shè)到平面的距離為,則,

,所以有,得,所以點(diǎn)到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1)當(dāng)時(shí),解不等式

2)已知是以2為周期的偶函數(shù),且當(dāng)時(shí),有.,且,求函數(shù)的反函數(shù);

3)若在上存在個(gè)不同的點(diǎn),使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著改革開放的不斷深入,祖國不斷富強(qiáng),人民的生活水平逐步提高,為了進(jìn)一步改善民生,201911日起我國實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用②子女教育費(fèi)用③繼續(xù)教育費(fèi)用④大病醫(yī)療費(fèi)用等.其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除2000元②子女教育費(fèi)用:每個(gè)子女每月扣除1000元.新個(gè)稅政策的稅率表部分內(nèi)容如下:

級(jí)數(shù)

一級(jí)

二級(jí)

三級(jí)

四級(jí)

每月應(yīng)納稅所得額(含稅)

不超過3000元的部分

超過3000元至12000元的部分

超過12000元至25000元的部分

超過25000元至35000元的部分

稅率

3

10

20

25

1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項(xiàng)附加扣除.請(qǐng)問李某月應(yīng)繳納的個(gè)稅金額為多少?

2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領(lǐng)的相關(guān)資料,通過整理資料可知,有一個(gè)孩子的有400人,沒有孩子的有100人,有一個(gè)孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項(xiàng)附加扣除(受統(tǒng)計(jì)的500人中,任何兩人均不在一個(gè)家庭).若他們的月收入均為20000元,依據(jù)樣本估計(jì)總體的思想,試估計(jì)在新個(gè)稅政策下這類人群繳納個(gè)稅金額的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高三男生的體能達(dá)標(biāo)情況,抽調(diào)了120名男生進(jìn)行立定跳遠(yuǎn)測試,根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下的頻率分布直方圖.若立定跳遠(yuǎn)成績落在區(qū)間的左側(cè),則認(rèn)為該學(xué)生屬“體能不達(dá)標(biāo)的學(xué)生,其中分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

1)若該校高三某男生的跳遠(yuǎn)距離為,試判斷該男生是否屬于“體能不達(dá)標(biāo)”的學(xué)生?

2)該校利用分層抽樣的方法從樣本區(qū)間中共抽出5人,再從中選出兩人進(jìn)行某體能訓(xùn)練,求選出的兩人中恰有一人跳遠(yuǎn)距離在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且.

1)求;

2)證明:存在唯一極大值點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知南北回歸線的緯度為,設(shè)地球表面某地正午太陽高度角為,為此時(shí)太陽直射緯度,為該地的緯度值,那么這三個(gè)量之間的關(guān)系是.當(dāng)?shù)叵陌肽?/span>取正值,冬半年取負(fù)值,如果在北半球某地(緯度為)的一幢高為的樓房北面蓋一新樓,要使新樓一層正午的太陽全年不被前面的樓房遮擋,兩樓的距離應(yīng)不小于______(結(jié)果用含有的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x,y,z均為正數(shù).

1)若xy1,證明:|x+z||y+z|4xyz;

2)若,求2xy2yz2xz的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.

1)證明:平面.

2)若,當(dāng)三棱錐的體積最大時(shí),求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

1)求函數(shù)的零點(diǎn),以及曲線處的切線方程;

2)設(shè)方程)有兩個(gè)實(shí)數(shù)根,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案