設(shè)數(shù)列,

問:(1)這個(gè)數(shù)列第2010項(xiàng)的值是多少;

(2)在這個(gè)數(shù)列中,第2010個(gè)值為1的項(xiàng)的序號是多少.

 

 

 

 

 

 

 

 

 

 

【答案】

 解(1)將數(shù)列分組:

因?yàn)?+2+3+…+62=1953;1+2+3+…+63=2016,

所以數(shù)列的第2010項(xiàng)屬于第63組倒數(shù)第7個(gè)數(shù),即為。    ---------  10分

   (2)由以上分組可以知道,每個(gè)奇數(shù)組中出現(xiàn)一個(gè)1,所以第2010個(gè)1出現(xiàn)在第4019組,而第4019組中的1位于該組第2010位,所以第2010個(gè)值為1的項(xiàng)的序號為(1+2+3+…+4018)+2010=809428。               ------------ 17分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:對于任意n∈N*,滿足條件
an+an+2
2
an+1
且an≤M(M是與n無關(guān)的常數(shù))的無窮數(shù)列an稱為T數(shù)列.
(1)若an=-n2+9n(n∈N*),證明:數(shù)列an是T數(shù)列;
(2)設(shè)數(shù)列bn的通項(xiàng)為bn=50n-(
3
2
)n
,且數(shù)列bn是T數(shù)列,求常數(shù)M的取值范圍;
(3)設(shè)數(shù)列cn=|
p
n
-1|
(n∈N*,p>1),問數(shù)列bn是否是T數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知整數(shù)數(shù)列{an}滿足:a1=1,a2=2,且2an-1<an-1+an+1<2an+1(n∈N,n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)將數(shù)列{an}中的所有項(xiàng)依次按如圖所示的規(guī)律循環(huán)地排成如下三角形數(shù)表:
精英家教網(wǎng)

依次計(jì)算各個(gè)三角形數(shù)表內(nèi)各行中的各數(shù)之和,設(shè)由這些和按原來行的前后順序構(gòu)成的數(shù)列為{bn},求b5+b100的值;
(3)令cn=2+ban+b•2an-1(b為大于等于3的正整數(shù)),問數(shù)列{cn}中是否存在連續(xù)三項(xiàng)成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項(xiàng);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.
(1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009
(2)若{an}滿足a1=p∈[0, 
1
2
)
,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說明理由;
(3)由(1)得數(shù)列{an},又設(shè)數(shù)列{bn},其中bn=an+2n+
2009
2n
,問是否存在最小的自然數(shù)n(n∈N*),使得對一切自然數(shù)m≥n,都有bm>2009?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)  已知數(shù)列中,為常數(shù),的前項(xiàng)和,且的等差中項(xiàng)。(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列,的前項(xiàng)和,問是否存在常數(shù),使恒成立?若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案