A. | $\frac{1}{16}$ | B. | $\frac{{\root{3}{4}}}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{{\root{3}{4}}}{8}$ |
分析 求出函數(shù)的導(dǎo)數(shù),計(jì)算f′(1)的值,從而求出函數(shù)f(x)的解析式,求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最大值點(diǎn)即可.
解答 解:∵f′(x)=-$\frac{2f′(1)}{3}$•$\frac{1}{2\sqrt{x}}$-2x,
∴f′(1)=-$\frac{1}{3}$f′(1)-2,
解得:f′(1)=-$\frac{3}{2}$,
故f(x)=$\sqrt{x}$-x2,
f′(x)=$\frac{1-4x\sqrt{x}}{2\sqrt{x}}$,
令f′(x)>0,解得:x<$\frac{\root{3}{4}}{4}$,
令f′(x)<0,解得:x>$\frac{\root{3}{4}}{4}$,
故f(x)在[0,$\frac{\root{3}{4}}{4}$)遞增,在($\frac{\root{3}{4}}{4}$,+∞)遞減,
故f(x)的最大值是f($\frac{\root{3}{4}}{4}$),
a=$\frac{\root{3}{4}}{4}$,
故選:B.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{10}{3}$ | C. | $\frac{20}{3}$ | D. | $\frac{25}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | $({-∞,\frac{1}{e}})$ | D. | $({\frac{1}{e},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com