如圖,四棱錐P-ABCD中,底面ABCD為梯形,AB∥CD,AD=CD=2AB=2,∠DAB=60°,PD⊥平面ABCD,M為PC的中點
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若PD=
1
2
AD,求二面角D-BM-P的余弦值.
考點:用空間向量求平面間的夾角,與二面角有關的立體幾何綜合題
專題:綜合題,空間位置關系與距離,空間角
分析:(Ⅰ)利用線面垂直的判定定理,先證明BD⊥底面PDC,然后利用線面垂直的性質證明:BD⊥PC;
(Ⅱ)建立空間直角坐標系,利用向量法求二面角的大小.
解答: (Ⅰ)證明:由余弦定理得BD=
1+4-2•1•2•
1
2
=
3
,
∴BD2+AB2=AD2,∴∠ABD=90°,BD⊥AB,
∵AB∥CD,∴BD⊥DC,
∵PD⊥底面ABCD,BD?底面ABCD,
∴BD⊥PD,
又PD∩DC=D,
∴BD⊥底面PDC,
又PC?面PDC,
∴BD⊥PC;
(Ⅱ)解:已知AB=1,AD=CD=2,PD=
3
,由(Ⅰ)知BD⊥底面PDC,
以D為坐標原點,DB為x軸,建立空間直角坐標系D-xyz,如圖:
則D(0,0,0),B(
3
,0,0),P(0,0,
2
),M(0,1,
2
2
),
DB
=(
3
,0,0),
DM
=(0,1,
2
2
),
CP
=(0,-2,
2
),
CB
=(
3
,-2,0),
設平面BDM的法向量為
m
=(x,y,z),則
x=0
y+
2
2
z=0

令z=
2
,則y=-2,可取
m
=(0,-1,
2
),
同理設平面BMP的法向量為
n
=(
2
3
3
,1,
2
),
∴cos<
m
,
n
>=
m
n
|
m
||
n
|
=
13
13
,
∴求二面角D-BM-P的余弦值為
13
13
點評:本題主要考查線面垂直的性質,以及空間二面角的大小,利用向量法解決空間角的關鍵是求出平面的法向量.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:其中真命題的個數(shù)是( 。
①隨機事件的概率不可能為0;
②事件A,B中至少有一個發(fā)生的概率一定比A,B中恰有一個發(fā)生的概率大;
③擲硬幣100次,結果51次出現(xiàn)正面,則出現(xiàn)正面的概率是
51
100
;
④互斥事件不一定是對立事件,對立事件一定是互斥事件;
⑤雙曲線
x2
16
-
y2
9
=1
的漸近線方程為y=±
3
4
x
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
2-cosx
sinx
(0<x<π)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,PB⊥BC,PD⊥DC,且PC=
3

(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角B-PD-C的余弦值;
(Ⅲ)棱PD上是否存在一點E,使直線EC與平面BCD所成的角是30°?若存在,求PE的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AB=BC=CD=
1
2
AD=2,O為AD上一點,且AO=1,平面外兩點P、E滿足,AE=1,EA⊥AB,EB⊥BD,PO∥EA.
(1)求證:EA⊥平面ABCD;
(2)求平面AED與平面BED夾角的余弦值;
(3)若BE∥平面PCD,求PO的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PA,PB是圓O的兩條切線,A,B是切點,C是劣弧AB(不包括端點)上一點,直線PC交圓O于另一點D,Q在弦CD上,且∠DAQ=∠PBC.求證:
(1)
BD
AD
=
BC
AC

(2)△ADQ∽△DBQ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知不等式2x-1>m(x2-1)對任意m∈[-2,2]恒成立,求x的取值范圍;
(2)是否存在m使得不等式2x-1>m(x2-1)對任意x∈[-2,2]恒成立.若存在,試求出m的取值范圍;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)已知如圖,四邊形ABCD是矩形,PA⊥面ABCD,其中AB=3,PA=4.若在PD上存在一點E,使得BE⊥CE.
(Ⅰ)求線段AD長度的取值范圍;
(Ⅱ)若滿足條件的E點有且只有一個,求二面角E-BC-A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)經(jīng)過點T(
2
,-
6
2
)
,其離心率為
1
2
,右頂點為A,右焦點為F(c,0),直線x=
a2
c
與x軸交于B,過點F的直線l與橢圓交于不同的兩點M、N,點P為點M關于直線x=
a2
c
的對稱點.
(1)求橢圓C的方程;
(2)求證:N、B、P三點共線;
(3)求△BNM的面積的最大值.

查看答案和解析>>

同步練習冊答案