已知m∈R,復數(shù)z=m2+4m+3+(m2+2m-3)i,當m=
-1
-1
時,z是純虛數(shù).
分析:要使復數(shù)z=m2+4m+3+(m2+2m-3)i是純虛數(shù),必須有
m2+4m+3=0
m2+2m-3 ≠0
,解方程求得 m的值.
解答:解:要使復數(shù)z=m2+4m+3+(m2+2m-3)i是純虛數(shù),
必須有
m2+4m+3=0
m2+2m-3 ≠0
,解得 m=-1.
故答案為:-1.
點評:本題主要考查純虛數(shù)的定義,得到
m2+4m+3=0
m2+2m-3 ≠0
,是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知m∈R,復數(shù)z=
m(m-2)m-1
+(m2+2m-3)i
,若z對應的點位于復平面的第二象限,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m∈R,復數(shù)z=
m-2m-1
+(m2+2m-3)i
,當m為何值時.
(1)z∈R;
(2)z是純虛數(shù); 
(3)z對應的點位于復平面的第二象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m∈R,復數(shù)z=(m2-5m+6)+(m2-3m)i.
(Ⅰ)實數(shù)m取什么值時?復數(shù)z為純虛數(shù).
(Ⅱ)實數(shù)m取值范圍是什么時?復數(shù)z對應的點在第四象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m∈R,復數(shù)z=
m(m+2)
m-1
+(m2+2m-3)i
,當m為何值時,
(1)z∈R;  (2)z是虛數(shù);  (3)z是純虛數(shù); (4)
.
z
=
1
2
+4i

查看答案和解析>>

同步練習冊答案