已知m,n是兩條不同直線,α,β是兩個(gè)不同的平面,且n?β,則下列敘述正確的是( 。
A、若m∥n,m?α,則α∥β
B、若α∥β,m?α,則m∥n
C、若m∥n,m⊥α,則α⊥β
D、若α∥β,m⊥n,則m⊥α
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:由m,n是兩條不同直線,α,β是兩個(gè)不同的平面,且n?β,知:
若m∥n,m?α,則α與β相交或平行,故A錯(cuò)誤;
若α∥β,m?α,則m與n平行或異面,故B錯(cuò)誤;
若m∥n,m⊥α,則由平面與平面垂直的判定定理得α⊥β,故C正確;
若α∥β,m⊥n,則m與α相交、平行或m?α,故D錯(cuò)誤.
故選:C.
點(diǎn)評(píng):本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷錯(cuò)誤的是( 。
A、“am2<bm2”是“a<b”的充分不必要條件
B、若f′(x0)=0,則x=x0是函數(shù)y=f(x)的極值點(diǎn)
C、函數(shù)y=f(x)滿足f(x+1)=f(1-x),則其圖象關(guān)于直線x=1對(duì)稱
D、定義在R上的函數(shù)y=f(x)滿足f(x+1)=-f(x),則周期為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在10支鉛筆中,有8支正品和2支次品,現(xiàn)從中任取1支,則取得次品的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
(m<0),直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(Ⅰ)求直線l的方程及m的值.
(2)在(1)的條件下求函數(shù)F(x)=x-
m
x
(x>0)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C1,C2的焦點(diǎn)分別在x,y軸上,且中心為坐標(biāo)原點(diǎn).雙曲線C1的實(shí)軸長和虛軸長分別等于雙曲線C2的虛軸長和實(shí)軸長,且雙曲線C1過點(diǎn)A(
5
,
3
),雙曲線C2過點(diǎn)B(
10
7
),求雙曲線C1,C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩圓x2+y2-2x+10y+1=0,x2+y2-2x+2y-m=0相交,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)g(x)=log2x,關(guān)于方程|g(x)|2+m|g(x)|+2m+3=0在(0,2)內(nèi)有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,4-2
7
)∪(4+2
7
,+∞)
B、(4-2
7
,4+2
7
C、(-
3
4
,-
2
3
D、(-
3
2
,-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4和點(diǎn)M(1,a),
(1)若過點(diǎn)M有且只有一條直線與圓O相切,求實(shí)數(shù)a的值,并求出切線方程;
(2)若a=2,圓O上有一動(dòng)點(diǎn)N(x0,y0),設(shè)線段MN上一點(diǎn)P滿足MP=2PN,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在x0點(diǎn)的某個(gè)鄰域內(nèi)有定義,則f(x)在x0處連續(xù)的充分必要條件是( 。
A、
lim
x-x0
f(x)存在
B、
lim
x→x0-
f(x)=
lim
x→x0+
f(x)
C、
lim
x-x0
f(x)=0
D、在x0的某個(gè)鄰域內(nèi),f(x)=f(x0)+α(x),其中
lim
x-x0
α(x)=0

查看答案和解析>>

同步練習(xí)冊(cè)答案