分析 根據(jù)題意,分析可得$\overrightarrow{a}$•$\overrightarrow$<0且兩個(gè)向量不共線,由此可得2×1+1×λ>0且2λ≠1×1,解可得λ的取值范圍,即可得答案.
解答 解:根據(jù)題意,若$\overrightarrow{a}$與$\overrightarrow$的夾角θ為銳角,
則有$\overrightarrow{a}$•$\overrightarrow$<0,即2×1+1×λ>0,
解可得λ>-2,
且$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,λ)不共線,則有2λ≠1×1,即λ≠$\frac{1}{2}$,
則λ的取值范圍是(-2,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞);
故答案為:(-2,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).
點(diǎn)評(píng) 本題考查數(shù)量積表示兩個(gè)向量的夾角,注意排除兩個(gè)向量共線同向的情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1 | D. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=±\sqrt{2}x$ | B. | y=±2x | C. | $y=±\frac{{\sqrt{2}}}{2}x$ | D. | $y=±\frac{1}{2}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2個(gè) | B. | 4個(gè) | C. | 8個(gè) | D. | 無(wú)窮個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({\frac{2}{3},+∞})$ | B. | (1,+∞) | C. | $({\frac{1}{2},\frac{2}{3}})$ | D. | $({\frac{2}{3},1})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(n)中有n項(xiàng),且f(2)=$\frac{1}{2}$+$\frac{1}{3}$ | B. | f(n)中有n+1項(xiàng),且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | ||
C. | f(n)中有n2+n+1項(xiàng),且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | D. | f(n)中有n2-n+1項(xiàng),且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com