12.若f(x)=cos(2x+$\frac{π}{3}$),則f'($\frac{π}{12}$)的值為( 。
A.1B.-1C.2D.-2

分析 根據(jù)題意,對函數(shù)f(x)=cos(2x+$\frac{π}{3}$)求導(dǎo)可得f′(x),將x=$\frac{π}{12}$代入f′(x)中計算可得答案.

解答 解:根據(jù)題意,f(x)=cos(2x+$\frac{π}{3}$),
其導(dǎo)數(shù)f′(x)=-2sin(2x+$\frac{π}{3}$),
則f'($\frac{π}{12}$)=-2sin($\frac{π}{2}$)=-2;
故選:D.

點(diǎn)評 本題考查復(fù)合函數(shù)導(dǎo)數(shù)的計算,關(guān)鍵是掌握復(fù)合函數(shù)導(dǎo)數(shù)的計算公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,λ),若$\overrightarrow{a}$與$\overrightarrow$的夾角θ為銳角,則λ的取值范圍是(-2,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(k,cos$\frac{π}{3}$),向量$\overrightarrow$=(sin$\frac{π}{6}$,tan$\frac{π}{4}$),若$\overrightarrow{a}∥\overrightarrow$,則實數(shù)k的值為( 。
A.$-\frac{1}{4}$B.-1C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知{an}是公差為-2的等差數(shù)列,其前5項的和S5=0,那么a1等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知α、β為銳角,$sinα=\frac{3}{5}$,$tan({β-α})=\frac{1}{3}$,則tanβ=( 。
A.$\frac{13}{9}$B.$\frac{9}{13}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.甲、乙、丙三人參加某次招聘會,若甲應(yīng)聘成功的概率為$\frac{4}{9}$,乙、丙應(yīng)聘成功的概率均為$\frac{t}{3}$(0<t<3),且三人是否應(yīng)聘成功是相互獨(dú)立的.
(1)若甲、乙、丙都應(yīng)聘成功的概率是$\frac{16}{81}$,求t的值;
(2)在(1)的條件下,設(shè)ξ表示甲、乙兩人中被聘用的人數(shù),求ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在空間,下列命題中正確的是(  )
A.沒有公共點(diǎn)的兩條直線平行B.與同一直線垂直的兩條直線平行
C.垂直于同一平面的兩條直線平行D.若直線a不在平面α內(nèi),則a∥平面α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.隨機(jī)變量X等可能取值為1,2,3,…,n,如果$P(X<4)=\frac{1}{2}$,那么n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在直二面角α-MN-β中,等腰直角三角形ABC的斜邊BC?α,一直角邊AC?β,BC與β所成角的正弦值為$\frac{\sqrt{6}}{4}$,則AB與β所成的角是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊答案