設(shè)函數(shù)f(x)=x-2msin x+(2m-1)sin xcos x(m為實數(shù))在(0,π)上為增函數(shù),則m的取值范圍為( )
A.[0,] B.(0,) C.(0,] D.[0,)
A
【解析】∵f(x)在區(qū)間(0,π)上是增函數(shù),
∴f′(x)=1-2mcos x+2(m-)cos 2x
=2[(2m-1)cos2x-mcos x+1-m]
=2(cos x-1)[(2m-1)cos x+(m-1)]>0
在(0,π)上恒成立,令cos x=t,則-1<t<1,
即不等式(t-1)[(2m-1)t+(m-1)]>0在(-1,1)上恒成立,
①若m>,則t<在(-1,1)上恒成立,
則只需≥1,即<m≤,
②當(dāng)m=時,則0·t+-1<0,
在(-1,1)上顯然成立;
③若m<,則t>在(-1,1)上恒成立,
則只需≤-1,即0≤m<.
綜上所述,所求實數(shù)m的取值范圍是[0,].
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建省三明市高三5月質(zhì)量檢查文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在三棱錐中,平面平面,于點,且,,
(1)求證:
(2)
(3)若,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時練六(解析版) 題型:選擇題
設(shè)m,n∈R,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是( )
A.[1-,1+]
B.(-∞,1-]∪[1+,+∞)
C.[2-2,2+2]
D.(-∞,2-2]∪[2+2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時練五(解析版) 題型:選擇題
若由不等式組確定的平面區(qū)域的邊界為三角形,且它的外接圓的圓心在x軸上,則實數(shù)m的值為( )
A. B.- C. D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時練五(解析版) 題型:選擇題
若集合A={x|0≤x+3≤8},B={x|x2-3x-4>0},則A∩B等于( )
A.{x|-3≤x<-1或4<x≤5}
B.{x|-3≤x<4}
C.{x|-1<x≤5}
D.{x|-1<x<4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時練二(解析版) 題型:選擇題
設(shè)函數(shù)f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是( )
A.f(x)+|g(x)|是偶函數(shù)
B.f(x)-|g(x)|是奇函數(shù)
C.|f(x)|+g(x)是偶函數(shù)
D.|f(x)|-g(x)是奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時練三(解析版) 題型:填空題
若執(zhí)行如圖所示的程序框圖,輸入x1=1,x2=2,x3=3,=2,則輸出的數(shù)等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時練一(解析版) 題型:選擇題
已知橢圓=1 (a>b>0),A(2,0)為長軸的一個端點,弦BC過橢圓的中心O,且·=0,|-|=2|-|,則其焦距為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AC=BC,點D是AB的中點.
(1)求證:BC1∥平面CA1D;
(2)求證:平面CA1D⊥平面AA1B1B;
(3)若底面ABC為邊長為2的正三角形,BB1=求三棱錐B1-A1DC的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com