甲、乙兩人向同一目標(biāo)射擊,命中率分別為0.4、0.5,則恰有一人命中的概率為( 。
A、0.9B、0.2
C、0.7D、0.5
考點:相互獨立事件的概率乘法公式
專題:計算題,概率與統(tǒng)計
分析:可先設(shè)“甲命中目標(biāo)”為事件A,“乙命中目標(biāo)”為事件B,由題意可得,P(A)=0.4,P(B)=0.5,且甲乙相互獨立,而甲、乙兩人中恰好有一人擊中目標(biāo)即為事件:
.
A
B
+A
.
B
,由相互獨立事件的概率的乘法公式可求.
解答: 解:設(shè)“甲命中目標(biāo)”為事件A,“乙命中目標(biāo)”為事件B
由題意可得,P(A)=0.4,P(B)=0.5,且甲乙相互獨立
∴甲、乙兩人中恰好有一人擊中目標(biāo)即為事件:
.
A
B
+A
.
B
,
∴P(
.
A
B
+A
.
B
)=0.6×0.5+0.4×0.5=0.5
故選:D.
點評:本題主要考查了相互獨立事件的概率的乘法公式再求解概率中的應(yīng)用,解題的關(guān)鍵是要把所求的事件用基本事件表示出來,然后根據(jù)公式求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=4y的焦點為F,準(zhǔn)線為l,A是l上一點,B是直線AF與C的一個交點,若
FA
=-4
FB
,則|BF|=(  )
A、
3
2
B、
5
2
C、3
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1與橢圓
x2
m2
+
y2
b2
=1(a>0,m>b>0)的離心率互為倒數(shù),則( 。
A、a2+b2=m2
B、a+b=m
C、a2=b2+m2
D、a=b+m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2ex-1-
1
3
x3-x2(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(1,+∞)時,用數(shù)學(xué)歸納法證明:?n∈N*,ex-1
xn
n!
(其中n!=1×2×…×n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l的方向向量
s
=(-1,1,1),平面π的法向量為
n
=(2,x2+x,-x),若直線l∥平面π,則實數(shù)x的值為( 。
A、-2
B、-
2
C、
2
D、±
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mlnx+(m-1)x(m∈R).
(Ⅰ)當(dāng)m=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax-1(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)F(x)=f(x)-x1nx在定義域內(nèi)是否存在零點?若存在,請指出有幾個零點;若不存在,請說明理由:
(3)若g(x)=ln(ex-1)-lnx,當(dāng)x∈(0,+∞)時,不等式f(g(x))<f(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
16
-
y2
9
=1的漸近線方程為( 。
A、y=±
4
3
x
B、y=±
3
4
x
C、y=±
3
5
x
D、y=±
4
5
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC為銳角三角形,若角θ終邊上一點P的坐標(biāo)為(sinA-cosB,cosA-sinC),則
sin(2π-θ)
|sinθ|
+
|cosθ|
sin(
π
2
+θ)
-
tanθ
|tanθ|
=
 

查看答案和解析>>

同步練習(xí)冊答案