直線l的方向向量
s
=(-1,1,1),平面π的法向量為
n
=(2,x2+x,-x),若直線l∥平面π,則實(shí)數(shù)x的值為(  )
A、-2
B、-
2
C、
2
D、±
2
考點(diǎn):向量語言表述線面的垂直、平行關(guān)系
專題:計(jì)算題,平面向量及應(yīng)用
分析:線面平行時(shí),直線的方向向量垂直于平面的法向量,即可求出實(shí)數(shù)x的值.
解答: 解:線面平行時(shí),直線的方向向量垂直于平面的法向量,
∵直線l的方向向量
s
=(-1,1,1),平面π的法向量為
n
=(2,x2+x,-x),直線l∥平面π,
∴x2-2=0,解得x=±
2

故選:D.
點(diǎn)評(píng):本題考查向量語言表述線面的垂直、平行關(guān)系,利用線面平行時(shí),直線的方向向量垂直于平面的法向量是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列四個(gè)命題
①“若x+y=0,則x,y互為相反數(shù)”的否命題
②“若q>1則x2+2x+q=0有實(shí)根“的逆否命題
③”tanα=tanβ,則α=β”的逆命題
④若x≠2且y≠1,則x+y≠3
其中真命題為(  )
A、①②B、①③C、①④D、①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)關(guān)于點(diǎn)(a,0)和(b,0)對(duì)稱(a≠b),則函數(shù)f(x)的一個(gè)周期T=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
3
ax3+x2+x+1(a≠0)在區(qū)間(0,1]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為(  )
A、(-∞,-3]
B、[-3,0)∪(0,+∞)
C、(-∞,-3)∪(0,+∞)
D、[-3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|2x-
3
4
|+|2x+
5
4
|,設(shè)m,n∈R+,且m+n=1.
(Ⅰ)求不等式f(x)≤
5
2
的解集;
(Ⅱ)求證:
2m+1
+
2n+1
≤2
f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人向同一目標(biāo)射擊,命中率分別為0.4、0.5,則恰有一人命中的概率為( 。
A、0.9B、0.2
C、0.7D、0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
=(x+
5
,y),
OB
=(x-
5
,y),且|
OA
|+|
OB
|=6,則|2x-3y-12|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an=
1
n
ln(1+
1
n
)+
1
2n3
-
1
3n4
.?dāng)?shù)列{an}的前n項(xiàng)和為Sn.求證Sn
33
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行六面體ABCD-A′B′C′D′,求證:
AB′
+
AC
+
AD′
=2
AC′

查看答案和解析>>

同步練習(xí)冊(cè)答案