對(duì)任意x∈R,函數(shù)f(x)的導(dǎo)數(shù)存在,若f′(x)>f(x)且 a>0,則以下正確的是( )
A.f(a)>ea•f(0)
B.f(a)<ea•f(0)
C.f(a)>f(0)
D.f(a)<f(0)
【答案】分析:由f′(x)>f(x)可得f'(x)-f(x)>0,而由e-x[f′(x)-f(x)]>0可判斷函數(shù)e-xf(x)是單調(diào)遞增函數(shù),結(jié)合a>0可求
解答:解:∵f′(x)>f(x)
∴f′(x)-f(x)>0
∵e-x>0
∴e-x[f′(x)-f(x)]>0
∴e-xf′(x)-e-xf(x)>0
而[e-xf(x)]′=(e-x)′f(x)+e-xf′(x)=-e-xf(x)+e-xf′(x)>0
∴e-xf(x)是單調(diào)遞增函數(shù)
∵a>0
于是e-af(a)>e-0f(0)=f(0)
∴f(a)>eaf(0)
故選A
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)的基本運(yùn)算及利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,這里的關(guān)鍵,是觀察和利用e-xf(x)的導(dǎo)函數(shù)的形式,這個(gè)需要多做些題目來建立經(jīng)驗(yàn).