【題目】如圖,在直三棱柱中,,,,,的中點(diǎn).

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

【答案】(1)見(jiàn)解析 (2)

【解析】

(1)連接于點(diǎn),連接,由矩形的性質(zhì),結(jié)合三角形中位線定理可得,由線面平行的判定定理可得結(jié)果;(2)先證明,分別以,軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,求得直線的方向向量利用向量垂直數(shù)量積為零列方程求得平面的法向量,由空間向量夾角余弦公式可得結(jié)果.

(1)連接于點(diǎn),連接,因?yàn)樗倪呅?/span>是矩形,所以點(diǎn)的中點(diǎn),

又點(diǎn)的中點(diǎn),所以的中位線,所以.

因?yàn)?/span>平面平面,

所以平面.

(2)由,,可得,

分別以,,軸、軸、軸建立如圖所示的空間直角坐標(biāo)系

則有,,,

所以,,,

設(shè)直線與平面所成角為,平面的法向量為,

,即,令,得

所以 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某服裝廠每天的固定成本是30000元,每天最大規(guī)模的生產(chǎn)量是.每生產(chǎn)一件服裝,成本增加100元,生產(chǎn)服裝的收入函數(shù)是,記,分別為每天生產(chǎn)服裝的利潤(rùn)和平均利潤(rùn)

1當(dāng)時(shí),每天生產(chǎn)量為多少時(shí),利潤(rùn)有最大值;

2每天生產(chǎn)量為多少時(shí),平均利潤(rùn)有最大值,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是橢圓上的動(dòng)點(diǎn),為橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),若M的角平分線上的一點(diǎn),且F1MMP,則|OM|的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)f(x)的單調(diào)遞增區(qū)間;

2)若,求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題14分)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):


3

4

5

6


2.5

3

4

4.5

1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;并指出x,y 是否線性相關(guān);

2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少?lài)崢?biāo)準(zhǔn)煤?

(參考:用最小二乘法求線性回歸方程系數(shù)公式,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ω0,0φπ,直線是函數(shù)fx)=sinωx+φ)圖象的兩條相鄰的對(duì)稱(chēng)軸,若將函數(shù)fx)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,則得到的圖象的函數(shù)解析式是(

A.B.

C.y2cos2xD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角三角形中,分別為內(nèi)角所對(duì)的邊,且滿足.

1)求角的大小;

2)若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2006 8 月中旬 , 湖南省資興市遇到了百年不遇的洪水災(zāi)害 . 在資興市的東江湖岸邊的點(diǎn) O (可視湖岸為直線) 停放著一只救人的小船,由于纜繩突然斷開(kāi),小船被風(fēng)刮跑,其方向與湖岸成 15°,, 速度為2.5 km/ h ,同時(shí),岸上有一人從同一地點(diǎn)開(kāi)始追趕小船 .已知他在岸上追的速度為4 km/ h ,在水中游的速度為 2 km/h .問(wèn)此人能否追上小船? 若小船速度改變 ,則小船能被此人追上的最大速度是多少 ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正多面體共有5種,即正四面體、正六面體、正八面體、正十二面體和正二十面體.任一個(gè)正多面體都有內(nèi)切球和外接球,若一個(gè)半徑為1的球既是一個(gè)正四面體的內(nèi)切球,又是一個(gè)正六面體的外接球,則這兩個(gè)多面體的頂點(diǎn)之間的最短距離為(

A.1B.1C.21D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案