根據(jù)2012年初發(fā)布的《環(huán)境空氣質量指數(shù)AQI技術規(guī)定(試行)》,AQI共分為六級,其中:0到50為一級優(yōu),51到100為二級良,101到150為三級輕度污染,151到200為四級中度污染,201到300為五級重度污染,300以上為六級嚴重污染.自2013年11月中旬北方啟動集中供暖后北京市霧霾天氣明顯增多,有人質疑集中供暖加重了環(huán)境污染,以下數(shù)據(jù)是北京市環(huán)保局隨機抽取的供暖前15天和供暖后15天的AQI數(shù)據(jù):
AQI (0,50] (50,100] (100,150] (150,200] (200,250] (250,300] (300,350]
供暖前 2 5 4 2 0 2 0
供暖后 0 6 4 0 3 1 1
(1)通過上述數(shù)據(jù)計算供暖后空氣質量指數(shù)為五級重度污染的概率,由此預測2014年1月份的31天中出現(xiàn)五級重度污染的天數(shù);(保留到整數(shù)位)
(2)分別求出樣本數(shù)據(jù)中供暖前和供暖后AQI的平均值,由此你能得出什么結論.
考點:古典概型及其概率計算公式
專題:計算題,概率與統(tǒng)計
分析:(1)求出五級重度污染的概率,從而預測2014年1月份的31天中出現(xiàn)五級重度污染的天數(shù);
(2)利用所給數(shù)據(jù),可求出樣本數(shù)據(jù)中供暖前和供暖后AQI的平均值,說明供暖后加重了環(huán)境污染.
解答: 解:(1)概率P=
4
15
(3分)
預測1月份出現(xiàn)五級重度污染的天數(shù)為
4
15
×31≈8
天(6分)
(2)供暖前AQI的平均值
.
x
1
=
25×2+75×5+125×4+175×2+275×2
15
=
365
3
≈122

供暖后AQI的平均值
.
x
2
=
75×6+125×4+225×3+275×1+325×1
15
=
445
3
≈148
.
x
2
.
x
1
,
故供暖后加重了環(huán)境污染.(12分)
點評:本題考查利用數(shù)學知識解決實際問題,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知左焦點為F1(-2
2
,0)的橢圓過點(
3
2
2
,
2
2
),過上頂點A作兩條互相垂直的動弦AP,AQ交橢圓于P,Q兩點.
(1)求橢圓的標準方程;
(2)若動弦AP所在直線的斜率為1,求直角三角形APQ的面積;
(3)試問動直線PQ是否過定點?若過定點,請給出證明,并求出該定點;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點(4,-4)在拋物線C:y2=2px(p>0)上,過焦點F且斜率為k(k>0)的直線交拋物線C于A、B兩點,|AB|=8,線段AB的垂直平分線交x軸于點G.
(Ⅰ)求拋物線C的標準方程;
(Ⅱ)若線段AB的中點為H,求△FGH的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a(1-|x-1|),a為常數(shù),且a>1.
(1)求f(x)的最大值;
(2)證明函數(shù)f(x)的圖象關于直線x=1對稱;
(3)當a=2時,討論方程f(f(x))=m解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學的高二(1)班男同學有45名,女同學有15名,老師按照分層抽樣的方法組建了一個4人的課外興趣小組.
(Ⅰ)求某同學被抽到的概率及課外興趣小組中男、女同學的人數(shù);
(Ⅱ)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出1名同學做實驗,該同學做完后,再從小組內剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)定義在R上,對任意的x,y∈R,f(x)≠0,且f(x+y)=f(x)f(y).
(Ⅰ)求f(0),并證明:f(x-y)=
f(x)
f(y)
;
(Ⅱ)若f(x)單調,且f(1)=2.設向量
a
=(
2
cos
θ
2
,1),
b
=(
2
λsin
θ
2
,cos2θ),對任意θ∈[0,2π),f(
a
b
)-f(3)≤0恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=3mx2-(2m+6)x+m+3在(-∞,1)上單減,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC-ccos(A+C)=3acosB.
(1)求cosB的值;
(2)若
BA
BC
=2,且a=
6
,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

順次連接橢圓
x2
25
+
y2
16
=1的四個頂點,得到的四邊形面積等于
 

查看答案和解析>>

同步練習冊答案