分析 當(dāng)n>2,且n∈N時(shí),f(n)<g(n),利用數(shù)學(xué)歸納法,可證得結(jié)論.
解答 解:當(dāng)n>2,且n∈N時(shí),f(n)<g(n),證明如下:
當(dāng)n=3時(shí),f(n)=$1+\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}$,$g(n)=2\sqrt{3}$,f(n)<g(n)成立,
假定n=k(k>2,且k∈N)時(shí),f(k)<g(k)成立,
即$1+\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{k}}$<2$\sqrt{k}$,
則當(dāng)n=k+1時(shí),$1+\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{k}}$+$\frac{1}{\sqrt{k+1}}$<2$\sqrt{k}$+$\frac{1}{\sqrt{k+1}}$
∵(k+$\frac{1}{2}$)2=k2+k+$\frac{1}{4}$>k2+k,
∴$\sqrt{{k}^{2}+k}$<k+$\frac{1}{2}$,
∴2$\sqrt{{k}^{2}+k}$<2k+1,
∴2$\sqrt{{k}^{2}+k}$+1<2(k+1),
∴2$\sqrt{k}$+$\frac{1}{\sqrt{k+1}}$<2$\sqrt{k+1}$,
即$1+\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{k}}$+$\frac{1}{\sqrt{k+1}}$<2$\sqrt{k+1}$,
綜上可得:當(dāng)n>2,且n∈N時(shí),f(n)<g(n)恒成立.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是不等式的證明,數(shù)學(xué)歸納法,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題
下列函數(shù)中,既是奇函數(shù),又在上為增函數(shù)的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{8}$ | B. | 向左平移$\frac{π}{8}$ | C. | 向右平移$\frac{π}{4}$ | D. | 向左平移$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com