過圓錐高的三等分點(diǎn)作平行于底面的截面,它們把圓錐側(cè)面分成的三部分的面積之比為   
【答案】分析:先從得到的三個圓錐入手,根據(jù)“過圓錐的高的三等分點(diǎn)作平行于底面的截面”,結(jié)合相似比:可知底面半徑之比:r1:r2:r3=1:2:3,母線長之比:l1:l2:l3=1:2:3,側(cè)面積之比:S1:S2:S3=1:4:9,從而得到結(jié)論.
解答:解:由此可得到三個圓錐,
根據(jù)題意則有:
底面半徑之比:r1:r2:r3=1:2:3,
母線長之比:l1:l2:l3=1:2:3,
側(cè)面積之比:S1:S2:S3=1:4:9,
所以三部分側(cè)面面積之比:S1:(S2-S1):(S3-S2)=1:3:5.
故答案為:1:3:5.
點(diǎn)評:本題主要考查圓錐的結(jié)構(gòu)特征,特別考查了截面問題,三角形相似比,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過圓錐高的三等分點(diǎn)作平行于底面的截面,它們把圓錐側(cè)面分成的三部分的面積之比為
1:3:5
1:3:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過圓錐高的三等分點(diǎn)作兩個平行于底面的截面,那么圓錐被分成的三部分的體積之比為( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省佛山市高二10月段考數(shù)學(xué)試卷(解析版) 題型:填空題

過圓錐高的三等分點(diǎn)作平行于底面的截面,它們把圓錐側(cè)面分成的三部分的面積之比為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過圓錐高的三等分點(diǎn)作兩個平行于底面的截面,那么圓錐被分成的三部分的體積之比為( �。�
A.1:2:3B.3:4:5C.1:7:19D.1:9:27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市蒼南縣靈溪二高高二(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

過圓錐高的三等分點(diǎn)作兩個平行于底面的截面,那么圓錐被分成的三部分的體積之比為( )
A.1:2:3
B.3:4:5
C.1:7:19
D.1:9:27

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷