10.如圖,在平行四邊形ABCD中,E為BD上一點(diǎn),且$\overrightarrow{BE}$=2$\overrightarrow{ED}$.
(1)試用向量$\overrightarrow{AB}$,$\overrightarrow{AD}$表示向量$\overrightarrow{EA}$,$\overrightarrow{EC}$;
(2)若$\overrightarrow{AB}$•$\overrightarrow{AD}$=1,AD=1,AB=$\sqrt{3}$,求$\overrightarrow{EA}$•$\overrightarrow{EC}$.

分析 (1)由向量的加減運(yùn)算,及向量基本定理,即可得到所求向量;
(2)運(yùn)用向量的數(shù)量積的性質(zhì),向量的平方即為模的平方,計(jì)算即可得到所求值.

解答 解:(1)$\overrightarrow{EA}$=$\overrightarrow{EB}$+$\overrightarrow{BA}$=$\frac{2}{3}$$\overrightarrow{DB}$-$\overrightarrow{AB}$=$\frac{2}{3}$($\overrightarrow{AB}$-$\overrightarrow{AD}$)-$\overrightarrow{AB}$
=-$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AD}$;
$\overrightarrow{EC}$=$\overrightarrow{EB}$+$\overrightarrow{BC}$=$\frac{2}{3}$($\overrightarrow{AB}$-$\overrightarrow{AD}$)+$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AD}$;
(2)若$\overrightarrow{AB}$•$\overrightarrow{AD}$=1,AD=1,AB=$\sqrt{3}$,
則$\overrightarrow{EA}$•$\overrightarrow{EC}$=(-$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AD}$)•($\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AD}$)
=-$\frac{2}{9}$$\overrightarrow{AB}$2-$\frac{2}{9}$$\overrightarrow{AD}$2-$\frac{5}{9}$$\overrightarrow{AB}$•$\overrightarrow{AD}$=-$\frac{2}{9}$×3-$\frac{2}{9}$×1-$\frac{5}{9}$×1
=-$\frac{13}{9}$.

點(diǎn)評 本題考查向量的加減和數(shù)量積的運(yùn)算,考查向量的平方即為模的平方,以及運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}前n項(xiàng)的和為Sn,滿足a1=0,an≥0,3an+12=an2+an+1(n∈N*)
(Ⅰ)用數(shù)學(xué)歸納法證明:1$-\frac{1}{n}$≤an<1(n∈N*)
(Ⅱ)求證:an<an+1(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x,y∈R,且3x+9y=2,則x+2y的最大值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)命題p:?x∈R,使得x2+2ax+2-a=0;命題q:不等式ax2-$\sqrt{2}$ax+1>0對任意x∈R成立,若p假q真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)f(x)=sin(2x+$\frac{π}{3}$)圖象上的每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,再將所得圖象向左平移$\frac{π}{12}$個(gè)單位得到函數(shù)g(x)的圖象.在g(x)圖象的所有對稱中心中,離原點(diǎn)最近的對稱中心為( 。
A.(-$\frac{5π}{12}$,0)B.($\frac{π}{4}$,0)C.(-$\frac{π}{6}$,0)D.($\frac{π}{12}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-$\frac{x-1}{a(x+1)}$(a>0)
(1)若函數(shù)f(x)在x=2處的切線與x軸平行,求實(shí)數(shù)a的值;
(2)討論函數(shù)f(x)在區(qū)間[1,2]上的單調(diào)性;
(3)證明:$(\frac{2018}{2017})^{2017.5}$>e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,A=60°,b,c是方程x2-3x+2=0的兩個(gè)實(shí)根,則邊BC長為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若雙曲線${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一條漸近線與圓x2+(y-2)2=1至多有一個(gè)交點(diǎn),則雙曲線的離心率為( 。
A.$(\;1,\;\sqrt{2}]$B.$(\;1,\;\sqrt{3}]$C.(1,2]D.(1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z滿足方程z=(z-2)i,則z=( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

同步練習(xí)冊答案