函數(shù)f(x)=
1
5
x5+
1
3
x3在R上有( 。﹤(gè)極值點(diǎn).
A、1個(gè)B、0個(gè)C、2個(gè)D、3個(gè)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出函數(shù)的導(dǎo)數(shù),從而得到函數(shù)在實(shí)數(shù)集上單調(diào)遞增,進(jìn)而函數(shù)無極值點(diǎn).
解答: 解;∵f′(x)=x4+x2≥0,
∴函數(shù)f(x)在R上單調(diào)遞增,
∴函數(shù)無極值點(diǎn),
故選:B.
點(diǎn)評(píng):本題考察了函數(shù)的單調(diào)性,函數(shù)的極值問題,導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,最小值是4的函數(shù)的序號(hào)是
 

①y=x+
4
x

②y=sinx+
4
sinx

③y=2ex+2e-x
④y=logx3+4log3x(0<x<1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x3-2ax+a在(0,1)內(nèi)有極小值,沒有極大值,則實(shí)數(shù)a的取值范圍是( 。
A、(0,3)
B、(-∞,3)
C、(0,+∞)
D、(0,
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于回歸分析的說法中錯(cuò)誤的是( 。
A、回歸直線一定過樣本中心(
.
x
,
.
y
B、殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適
C、兩個(gè)模型中殘差平方和越小的模型擬合的效果越好
D、甲、乙兩個(gè)模型的R2分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,-1),
b
=(-2,3),則
a
-2
b
=( 。
A、(-6,7)
B、(-2,5)
C、(0,-2)
D、(6,-7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

AC
可以寫成①
AO
+
OC
;②
AO
-
OC
;③
OA
-
OC
;④
OC
-
OA
.其中正確的是( 。
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的焦距長為2c,過原點(diǎn)O作圓:(x-c)2+y2=b2的兩條切線,切點(diǎn)分別是A,B,且∠AOB=120°,那么該雙曲線的離心率為( 。
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對(duì)角線A1C1上的兩個(gè)不同動(dòng)點(diǎn).則以下結(jié)論不成立的是( 。
A、存在P,Q兩點(diǎn),使BP⊥DQ
B、存在P,Q兩點(diǎn),使BP,DQ與直線B1C都成45°的角
C、若|PQ|=1,則四面體BDPQ的體積一定是定值
D、若|PQ|=1,則四面體BDPQ在該正方體六個(gè)面上的正投影的面積的和為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,a,b,c分別為角A,B,C所對(duì)應(yīng)的邊,b=3,bcosC+ccosB=
2
asinA.
(1)求A的值;
(2)若△ABC的面積S=3,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案