【題目】某企業(yè)2017年招聘員工,其中A、B、C、D、E五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
(Ⅰ)從表中所有應(yīng)聘人員中隨機(jī)選擇1人,試估計(jì)此人被錄用的概率;
(Ⅱ)從應(yīng)聘E崗位的6人中隨機(jī)選擇1名男性和1名女性,求這2人均被錄用的概率;
(Ⅲ)表中A、B、C、D、E各崗位的男性、女性錄用比例都接近(二者之差的絕對(duì)值不大于5%),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請(qǐng)寫出這四種崗位.(只需寫出結(jié)論)
【答案】(Ⅰ);(Ⅱ) ;(Ⅲ)這四種崗位是:B、C、D、E.
【解析】試題分析:(Ⅰ)由表計(jì)算出總?cè)藬?shù)和被該企業(yè)錄用的人數(shù),作比即可;
(Ⅱ)記應(yīng)聘E崗位的男性為, , ,被錄用者為, ;應(yīng)聘E崗位的女性為, , ,被錄用者為, ,列舉出所有基本事件,利用古典概型求解即可;
(Ⅲ)由表易知這四種崗位是:B、C、D、E.
試題解析:
(Ⅰ)因?yàn)楸碇兴袘?yīng)聘人員總數(shù)為,
被該企業(yè)錄用的人數(shù)為.
所以從表中所有應(yīng)聘人員中隨機(jī)選擇1人,此人被錄用的概率約為.
(Ⅱ)記應(yīng)聘E崗位的男性為, , ,被錄用者為, ;應(yīng)聘E崗位的女性為, , ,被錄用者為, .
從應(yīng)聘E崗位的6人中隨機(jī)選擇1名男性和1名女性,共9種情況,即: .
這2人均被錄用的情況有4種,即: .
記“從應(yīng)聘E崗位的6人中隨機(jī)選擇1名男性和1名女性,這2人均被錄用”為事件,
則.
(Ⅲ)這四種崗位是:B、C、D、E.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,直線:,直線:.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.
(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;
(2)已知直線與曲線交于,兩點(diǎn),直線與曲線交于,兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,平面 為等腰直角三角形,,為的中點(diǎn),為的中點(diǎn).
(1)求異面直線與所成角的余弦值;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知, 是橢圓的左右焦點(diǎn), 為橢圓的上頂點(diǎn),點(diǎn)在橢圓上,直線與軸的交點(diǎn)為, 為坐標(biāo)原點(diǎn),且, .
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作兩條互相垂直的直線分別與橢圓交于, 兩點(diǎn)(異于點(diǎn)),證明:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2018·邯鄲一模)若甲、乙兩類水果的質(zhì)量(單位:kg)分別服從正態(tài)分布N(μ1,σ2)及N(μ2,σ2),其正態(tài)分布的密度曲線如圖所示,則下列說(shuō)法錯(cuò)誤的是( )
A. 乙類水果的質(zhì)量服從的正態(tài)分布的參數(shù)σ2=64
B. 甲類水果的質(zhì)量比乙類水果的質(zhì)量更集中
C. 甲類水果的平均質(zhì)量μ1=0.4 kg
D. 甲類水果的平均質(zhì)量比乙類水果的平均質(zhì)量小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在即將進(jìn)入休漁期時(shí),某小微企業(yè)決定囤積一些冰鮮產(chǎn)品,銷售所囤積產(chǎn)品的凈利潤(rùn)f(x)萬(wàn)元與投入x萬(wàn)元之間近似滿足函數(shù)關(guān)系:,若投入2萬(wàn)元,可得到凈利潤(rùn)為5.2萬(wàn)元.
(1)試求該小微企業(yè)投入多少萬(wàn)元時(shí),獲得的凈利潤(rùn)最大;
(2)請(qǐng)判斷該小微企業(yè)是否會(huì)虧本,若虧本,求出投入資金的范圍,若不虧本,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):ln 2≈0.7,ln 15≈2.7)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】搶“微信紅包”已經(jīng)成為中國(guó)百姓歡度春節(jié)時(shí)非常喜愛(ài)的一項(xiàng)活動(dòng).小明收集班內(nèi)20名同學(xué)今年春節(jié)期間搶到紅包金額(元)如下(四舍五入取整數(shù)):
102 52 41 121 72
162 50 22 158 46
43 136 95 192 59
99 22 68 98 79
對(duì)這20個(gè)數(shù)據(jù)進(jìn)行分組,各組的頻數(shù)如下:
(Ⅰ)寫出m,n的值,并回答這20名同學(xué)搶到的紅包金額的中位數(shù)落在哪個(gè)組別;
(Ⅱ)記C組紅包金額的平均數(shù)與方差分別為、,E組紅包金額的平均數(shù)與方差分別為、,試分別比較與、與的大小;(只需寫出結(jié)論)
(Ⅲ)從A,E兩組所有數(shù)據(jù)中任取2個(gè),求這2個(gè)數(shù)據(jù)差的絕對(duì)值大于100的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB=4,BC=CD=2,AA=2,E、E分別是棱AD、AA的中點(diǎn).
(1)設(shè)F是棱AB的中點(diǎn),證明:直線EE//平面FCC;
(2)證明:平面D1AC⊥平面BB1C1C.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com