7.已知z為純虛數(shù),且(2+i)z=1+ai3(i為虛數(shù)單位),則復(fù)數(shù)a+z在復(fù)平面內(nèi)對應(yīng)的點所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 根據(jù)復(fù)數(shù)是純虛數(shù)求出a的值,結(jié)合復(fù)數(shù)的幾何意義進(jìn)行求解即可.

解答 解:(2+i)z=1+ai3為純虛數(shù),
則z=$\frac{1-ai}{2+i}$=$\frac{(1-ai)(2-i)}{(2+i)(2-i)}$=$\frac{2-a-(2a+1)i}{5}$,
∴2-a=0,且2a+1≠0,
得a=2,
∴z=-i,
則復(fù)數(shù)a+z=2-i對應(yīng)的坐標(biāo)為(2,-1)位于第四象限,
故選:D

點評 本題主要考查復(fù)數(shù)的幾何意義以及復(fù)數(shù)的概念,求出a的值是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù) f(x)=Acos(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R),其部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[0,π]時,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足an+2-an+1=an+1-an對于任意n∈N*恒成立,且a1=1,a3=2,數(shù)列{bn}的前n項和為Sn,且滿足Sn+$\frac{1}{2}$bn=1(n∈N*)
(Ⅰ)求數(shù)列{an},{bn}的通項公式
(Ⅱ)設(shè)cn=an•bn,數(shù)列{cn}的前n項和為Tn
(1)求Tn
(2)求滿足不等式$\frac{{T}_{n}}{1-{S}_{n}}$≤9的所有的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知線段PQ兩端點的坐標(biāo)分別為(-1,1),(2,2),若直線l:x+my+m=0與線段PQ有交點,求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在平面內(nèi),$\overrightarrow{A{B_1}}⊥\overrightarrow{A{B_2}},|\overrightarrow{O{B_1}}|=3,|\overrightarrow{O{B_2}}|=4,\overrightarrow{AP}=\overrightarrow{A{B_1}}+\overrightarrow{A{B_2}}$,若$1<|\overrightarrow{OP}|<2$,則$|\overrightarrow{OA}|$的取值范圍是( 。
A.$(2\sqrt{3},\sqrt{17})$B.$(\sqrt{17},\sqrt{21})$C.$(\sqrt{17},2\sqrt{6})$D.$(\sqrt{21},2\sqrt{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在直角坐標(biāo)系中,點A(1,2),點B(3,1)到直線L的距離分別為1和2,則符合條件的直線條數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.拋物線y2=2px(p>0)的焦點為F,準(zhǔn)線為l,A,B是拋物線上的兩個動點,且滿足∠AFB=$\frac{π}{2}$.設(shè)線段AB的中點M在l上的投影為N,則$\frac{{|{AB}|}}{{|{MN}|}}$的最小值是( 。
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=x3-ax在(-∞,-1]上是單調(diào)函數(shù),則a的取值范圍是(  )
A.a>3B.a≥3C.a<3D.a≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)Sn,Tn分別是等差數(shù)列{an},{bn}的前n項和,已知$\frac{S_n}{T_n}=\frac{n+1}{2n-1}$,n∈N*,則$\frac{{{a_3}+{a_7}}}{{{b_1}+{b_9}}}$=$\frac{10}{17}$.

查看答案和解析>>

同步練習(xí)冊答案