15.已知線段PQ兩端點的坐標(biāo)分別為(-1,1),(2,2),若直線l:x+my+m=0與線段PQ有交點,求m的取值范圍

分析 根據(jù)題意,分析可得P,Q兩點在直線的兩側(cè)或在直線l上,則有(-1+m+m)•(2+2m+m)≤0,解可得m的值,即可得答案.

解答 解:根據(jù)題意,直線l:x+my+m=0與線段PQ有交點,
則P,Q兩點在直線的兩側(cè)或在直線l上,
則有(-1+m+m)•(2+2m+m)≤0;
解得-$\frac{2}{3}$≤m≤$\frac{1}{2}$,
即m的取值范圍是[-$\frac{2}{3}$,$\frac{1}{2}$].

點評 本題考查一元二次方程表示平面區(qū)域的問題,關(guān)鍵是將直線與線段相交問題轉(zhuǎn)化為點在直線的異側(cè)問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.四位同學(xué)參加知識競賽,每位同學(xué)須從甲乙兩道題目中任選一道題目作答,答對甲可得60分,答錯甲得-60分,答對乙得180分,答錯乙得-180分,結(jié)果是這四位同學(xué)的總得分為0分,那么不同的得分情況共計有44種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知${(2{x^2}-\frac{1}{x})^n}$的展開式二項式系數(shù)和比它的各項系數(shù)和大31.
(Ⅰ)求展開式中含有x4的項;
(Ⅱ)求展開式中二項式系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知{an}的前n項和為${S_n}=1-5+9-13+17-21+…+{({-1})^{n-1}}({4n-3})$,則S17-S22的值是( 。
A.-11B.46C.77D.-76

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列{an}的公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐S-ABCD中,已知SD⊥底面ABCD,且四邊形ABCD為直角梯形,∠DAB=∠ADC=$\frac{π}{2}$,SD=DC=2,AD=AB=1,E為棱SB上的一點,且DE⊥SC.
(Ⅰ)求$\frac{SE}{EB}$的值;
(Ⅱ)求直線EC與平面ADE所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知z為純虛數(shù),且(2+i)z=1+ai3(i為虛數(shù)單位),則復(fù)數(shù)a+z在復(fù)平面內(nèi)對應(yīng)的點所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若數(shù)f(x)=lnx+x2+ax(a∈R)
(1)若函數(shù)f(x)的圖象在點P(1,f(1))處的切線與直線x+2y-1=0垂直,求實數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C1:x2+y2+2x-6y+1=0,與圓C2:x2+y2-4x+2y-11=0相交于A,B兩點,求AB所在的直線方程和公共弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案