已知f(x)=-x2+a(5-a)x+b.
(1)若不等式f(x)>0的解集為(-1,7)時,求實數(shù)a,b的值;
(2)當a∈[-1,2)時,f(3)<0恒成立,求實數(shù)b的取值范圍.
(1)∵不等式f(x)>0的解集為(-1,7),
∴-1,7是方程-x2+a(5-a)x+b=0的兩根.
a(5-a)=6
b=7

a=2
b=7
a=3
b=7

(2)∵當a∈[-1,2)時,f(3)<0恒成立,
∴f(3)=-9+a(5-a)•3+b=-3a2+15a-9+b<0,a∈[-1,2)恒成立
即b<3a2-15a+9,a∈[-1,2)恒成立;
設(shè)g(a)=3a2-15a+9=3(a-
5
2
)2-
39
4
,
函數(shù)g(a)對稱軸為a=
5
2

當a∈[-1,2)時,g(a)是減函數(shù),
∴g(a)>g(2)=-9,
∴b≤-9,
∴實數(shù)b的取值范圍是(-∞,-9].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)(x∈R,且x≠kπ+
π
2
(k∈Z))是周期為π的函數(shù),當x∈(-
π
2
π
2
)時,f(x)=2x+cosx.設(shè)a=f(-1),b=f(-2),c=f(-3)則( 。
A.c<b<aB.b<c<aC.c<a<bD.a(chǎn)<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

判斷下列函數(shù)的奇偶性,并證明:
(1)f(x)=x+
1
x
(2)f(x)=x4-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=tx2+2t2x+t-1(x∈R,t>0).
(Ⅰ)求f(x)的最小值h(t);
(Ⅱ)若h(t)<-2t+m對t∈(0,2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x2+bx+c(b,c∈R),若b、c滿足c≥
b2
4
+1
,且f(c)-f(b)≤M(c2-b2)恒成立,則M的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對?a、b∈R,運算“⊕”、“?”定義為:a⊕b=
a(a<b)
b(a≥b)
,a?b=
a(a≥b)
b(a<b)
,則下列各式其中不恒成立的是( 。
(1)a?b+a⊕b=a+b
(2)a?b-a⊕b=a-b
(3)[a?b]•[a⊕b]=a•b
(4)[a?b]÷[a⊕b]=a÷b.
A.(1)(3)B.(2)(4)C.(1)(2)(3)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=4x-2•2x+1-6,其中x∈[0,3].
(1)求函數(shù)f(x)的最大值和最小值;
(2)若實數(shù)a滿足:f(x)-a≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x2-2ax+b是定義在區(qū)間[-2b,3b-1]上的偶函數(shù),則函數(shù)f(x)的值域為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象關(guān)于( )對稱。                          
A.直線B.X軸C.原點D.Y軸

查看答案和解析>>

同步練習(xí)冊答案